首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   237篇
  2021年   7篇
  2018年   13篇
  2017年   9篇
  2016年   13篇
  2015年   18篇
  2014年   19篇
  2013年   37篇
  2012年   38篇
  2011年   34篇
  2010年   26篇
  2009年   25篇
  2008年   24篇
  2007年   28篇
  2006年   27篇
  2005年   26篇
  2004年   24篇
  2003年   25篇
  2002年   25篇
  2001年   22篇
  2000年   23篇
  1999年   43篇
  1998年   20篇
  1997年   17篇
  1996年   21篇
  1995年   9篇
  1994年   15篇
  1993年   16篇
  1992年   25篇
  1991年   24篇
  1990年   16篇
  1989年   24篇
  1988年   26篇
  1987年   25篇
  1986年   21篇
  1985年   25篇
  1984年   14篇
  1983年   25篇
  1982年   13篇
  1981年   9篇
  1980年   15篇
  1979年   17篇
  1978年   14篇
  1977年   12篇
  1976年   16篇
  1975年   12篇
  1974年   14篇
  1973年   19篇
  1972年   26篇
  1970年   8篇
  1969年   7篇
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
141.
Fenretinide is a synthetic retinoid that is being tested in clinical trials for the treatment of breast cancer and insulin resistance, but its mechanism of action has been elusive. Recent in vitro data indicate that fenretinide inhibits dihydroceramide desaturase, an enzyme involved in the biosynthesis of lipotoxic ceramides that antagonize insulin action. Because of this finding, we assessed whether fenretinide could improve insulin sensitivity and glucose homeostasis in vitro and in vivo by controlling ceramide production. The effect of fenretinide on insulin action and the cellular lipidome was assessed in a number of lipid-challenged models including cultured myotubes and isolated muscles strips incubated with exogenous fatty acids and mice fed a high-fat diet. Insulin action was evaluated in the various models by measuring glucose uptake or disposal and the activation of Akt/PKB, a serine/threonine kinase that is obligate for insulin-stimulated anabolism. The effects of fenretinide on cellular lipid levels were assessed by LC-MS/MS. Fenretinide negated lipid-induced insulin resistance in each of the model systems assayed. Simultaneously, the drug depleted cells of ceramide, while promoting the accumulation of the precursor dihydroceramide, a substrate for the reaction catalyzed by Des1. These data suggest that fenretinide improves insulin sensitivity, at least in part, by inhibiting Des1 and suggest that therapeutics targeting this enzyme may be a viable therapeutic means for normalizing glucose homeostasis in the overweight and diabetic.  相似文献   
142.
HSV-1 infection of the cornea leads to a potentially blinding immunoinflammatory lesion of the cornea, termed herpetic stromal keratitis. It has also been shown that one of the factors limiting inflammation of the cornea is the presence of Fas ligand (FasL) on corneal epithelium and endothelium. In this study, the role played by FasL expression in the cornea following acute infection with HSV-1 was determined. Both BALB/c and C57BL/6 (B6) mice with HSV-1 infection were compared with their lpr and gld counterparts. Results indicated that mice bearing mutations in the Fas Ag (lpr) displayed the most severe disease, whereas the FasL-defective gld mouse displayed an intermediate phenotype. It was further demonstrated that increased disease was due to lack of Fas expression on bone marrow-derived cells. Of interest, although virus persisted slightly longer in the corneas of mice bearing lpr and gld mutations, the persistence of infectious virus in the trigeminal ganglia was the same for all strains infected. Further, B6 mice bearing lpr and gld mutations were also more resistant to virus-induced mortality than were wild-type B6 mice. Thus, neither disease nor mortality correlated with viral replication in these mice. Collectively, the findings indicate that the presence of FasL on the cornea restricts the entry of Fas(+) bone marrow-derived inflammatory cells and thus reduces the severity of HSK.  相似文献   
143.
Field CM  Summers DK 《Plasmid》2012,67(2):88-94
In the absence of active partitioning, strict control of plasmid copy number is required to minimise the possibility of plasmid loss at bacterial cell division. An important cause of multicopy plasmid instability is the formation of plasmid dimers by recombination and their subsequent proliferation by over-replication in a process known as the dimer catastrophe. This leads to the formation of dimer-only cells in which plasmid copy number is substantially lower than in cells containing only monomers, and which have a greatly increased probability of plasmid loss at division. The accumulation of dimers triggers the synthesis of the regulatory small RNA, Rcd, which stimulates tryptophanase and increases the production of indole. This, in turn, inhibits Escherichia coli cell division. The Rcd checkpoint hypothesis proposes that delaying cell division allows time for the relatively slow conversion of plasmid dimers to monomers by Xer-cer site-specific recombination. In the present work we have re-evaluated this hypothesis and concluded that a cell division block is insufficient to prevent the dimer catastrophe. Plasmid replication must also be inhibited. In vivo experiments have shown that indole, when added exogenously to a broth culture of E. coli does indeed stop plasmid replication as well as cell division. We have also shown that indole inhibits the activity of DNA gyrase in vitro and propose that this is the mechanism by which plasmid replication is blocked. The simultaneous effects of upon growth, cell division and DNA replication in E. coli suggest that indole acts as a true cell cycle regulator.  相似文献   
144.
145.
To survive in immune-competent hosts, the pathogen Staphylococcus aureus expresses and secretes a sophisticated array of proteins that inhibit the complement system. Among these are the staphylococcal complement inhibitors (SCIN), which are composed of three active proteins (SCIN-A, -B, and -C) and one purportedly inactive member (SCIN-D or ORF-D). Because previous work has focused almost exclusively on SCIN-A, we sought to provide initial structure/function information on additional SCIN proteins. To this end we determined crystal structures of an active, N-terminal truncation mutant of SCIN-B (denoted SCIN-B18–85) both free and bound to the C3c fragment of complement component C3 at 1.5 and 3.4 Å resolution, respectively. Comparison of the C3c/SCIN-B18–85 structure with that of C3c/SCIN-A revealed that both proteins target the same functional hotspot on the C3b/C3c surface yet harbor diversity in both the type of residues and interactions formed at their C3b/C3c interfaces. Most importantly, these structures allowed identification of Arg44 and Tyr51 as residues key for SCIN-B binding to C3b and subsequent inhibition of the AP C3 convertase. In addition, we also solved several crystal structures of SCIN-D to 1.3 Å limiting resolution. This revealed an unexpected structural deviation in the N-terminal α helix relative to SCIN-A and SCIN-B. Comparative analysis of both electrostatic potentials and surface complementarity suggest a physical explanation for the inability of SCIN-D to bind C3b/C3c. Together, these studies provide a more thorough understanding of immune evasion by S. aureus and enhance potential use of SCIN proteins as templates for design of complement targeted therapeutics.  相似文献   
146.
The rich biodiversity of the Indonesian island of Sulawesi is subject to a high rate of deforestation and other pressures. Its plight is symbolized by the deteriorating conservation status of the maleo, an iconic galliform bird that is both striking in appearance and intimately bound up with local traditions. After a series of international-led projects during the 1980s and early 1990s conservation efforts petered out until recently when there has been an upsurge in local-led concern and action. To capitalize on this a workshop was held in 2010 to share local perceptions, lessons and concerns about the species and these conservation efforts. The workshop was dominated by members of local communities and their elected or traditional representatives, although there was also a wide variety of other stakeholders present, including from national species conservation and local government agencies. Whilst there is a need for more information to underpin the actions necessary to ensure the survival of this species, the overwhelming perception of participants was that continued decentralization of policy making and budgetary responsibility would enhance the conservation efforts for this species (and other elements of biodiversity) considerably. This would allow the upsurge in locally-led conservation activities to be continued and expanded.  相似文献   
147.
Lsr2 is a small DNA-binding protein present in mycobacteria and related actinobacteria that regulates gene expression and influences the organization of bacterial chromatin. Lsr2 is a dimer that binds to AT-rich regions of chromosomal DNA and physically protects DNA from damage by reactive oxygen intermediates (ROI). A recent structure of the C-terminal DNA-binding domain of Lsr2 provides a rationale for its interaction with the minor groove of DNA, its preference for AT-rich tracts, and its similarity to other bacterial nucleoid-associated DNA-binding domains. In contrast, the details of Lsr2 dimerization (and oligomerization) via its N-terminal domain, and the mechanism of Lsr2-mediated chromosomal cross-linking and protection is unknown. We have solved the structure of the N-terminal domain of Lsr2 (N-Lsr2) at 1.73 ? resolution using crystallographic ab initio approaches. The structure shows an intimate dimer of two ?-?-a motifs with no close homologues in the structural databases. The organization of individual N-Lsr2 dimers in the crystal also reveals a mechanism for oligomerization. Proteolytic removal of three N-terminal residues from Lsr2 results in the formation of an anti-parallel β-sheet between neighboring molecules and the formation of linear chains of N-Lsr2. Oligomerization can be artificially induced using low concentrations of trypsin and the arrangement of N-Lsr2 into long chains is observed in both monoclinic and hexagonal crystallographic space groups. In solution, oligomerization of N-Lsr2 is also observed following treatment with trypsin. A change in chromosomal topology after the addition of trypsin to full-length Lsr2-DNA complexes and protection of DNA towards DNAse digestion can be observed using electron microscopy and electrophoresis. These results suggest a mechanism for oligomerization of Lsr2 via protease-activation leading to chromosome compaction and protection, and concomitant down-regulation of large numbers of genes. This mechanism is likely to be relevant under conditions of stress where cellular proteases are known to be upregulated.  相似文献   
148.
An automated technique for the identification, tracking and analysis of biological cells is presented. It is based on the use of nanoparticles, enclosed within intra-cellular vesicles, to produce clusters of discrete, point-like fluorescent, light sources within the cells. Computational analysis of these light ensembles in successive time frames of a movie sequence, using k-means clustering and particle tracking algorithms, provides robust and automated discrimination of live cells and their motion and a quantitative measure of their proliferation. This approach is a cytometric version of the moving light display technique which is widely used for analyzing the biological motion of humans and animals. We use the endocytosis of CdTe/ZnS, core-shell quantum dots to produce the light displays within an A549, epithelial, lung cancer cell line, using time-lapse imaging with frame acquisition every 5 minutes over a 40 hour time period. The nanoparticle moving light displays provide simultaneous collection of cell motility data, resolution of mitotic traversal dynamics and identification of familial relationships allowing construction of multi-parameter lineage trees.  相似文献   
149.
Aim The dimensions of species vulnerability to climate change are complex, and this impedes efforts to provide clear advice for conservation planning. In this study, we used a formal framework to assess species vulnerability to climate change quantifying exposure, sensitivity and adaptive capacity and then used this information to target areas for reducing vulnerability at a regional scale. Location The 6500‐km2 Mount Lofty Ranges region in South Australia. Methods We quantified the vulnerability of 171 plant species in a fragmented yet biologically important agro‐ecological landscape, typical of many temperate zones globally. We specified exposure, using three climate change scenarios; sensitivity, as the adverse impact of climate change on species’ spatial distribution; and adaptive capacity, as the ability of species to migrate calculated using dispersal kernels. Priority areas for reducing vulnerability were then identified by incorporating these various components into a single priority index. Results Climate change had a variable impact on species distributions. Those species whose range decreased or shifted geographically were attributed higher sensitivity than those species that increased geographic range or remained unchanged. The ability to adapt to range changes in response to shifting climates varies both spatially and between species. Areas of highest priority for reducing vulnerability were found at higher altitudes and lower latitudes with increasing severity of climate change. Main conclusions Our study demonstrates the use of a single spatially explicit index that identifies areas in the landscape for targeting specific conservation and restoration actions to reduce species vulnerability to climate change. Our index can be transferred to other regions around the world in which climate change poses an increasing threat to native species.  相似文献   
150.
Sphingolipid biosynthesis is potently upregulated by factors associated with cellular stress, including numerous chemotherapeutics, inflammatory cytokines, and glucocorticoids. Dihydroceramide desaturase 1 (Des1), the third enzyme in the highly conserved pathway driving sphingolipid biosynthesis, introduces the 4,5-trans-double bond that typifies most higher-order sphingolipids. Surprisingly, recent studies have shown that certain chemotherapeutics and other drugs inhibit Des1, giving rise to a number of sphingolipids that lack the characteristic double bond. In order to assess the effect of an altered sphingolipid profile (via Des1 inhibition) on cell function, we generated isogenic mouse embryonic fibroblasts lacking both Des1 alleles. Lipidomic profiling revealed that these cells contained higher levels of dihydroceramide than wild-type fibroblasts and that complex sphingolipids were comprised predominantly of the saturated backbone (e.g. sphinganine vs. sphingosine, dihydrosphingomyelin vs. sphingomyelin, etc.). Des1 ablation activated pro-survival and anabolic signaling intermediates (e.g. Akt/PKB, mTOR, MAPK, etc.) and provided protection from apoptosis caused by etoposide, a chemotherapeutic that induces sphingolipid synthesis by upregulating several sphingolipid biosynthesizing enzymes. These data reveal that the double bond present in most sphingolipids has a profound impact on cell survival pathways, and that the manipulation of Des1 could have important effects on apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号