首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   12篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   20篇
  2020年   12篇
  2019年   12篇
  2018年   20篇
  2017年   11篇
  2016年   8篇
  2015年   6篇
  2014年   21篇
  2013年   25篇
  2012年   24篇
  2011年   21篇
  2010年   6篇
  2009年   10篇
  2008年   9篇
  2007年   13篇
  2006年   9篇
  2005年   12篇
  2004年   14篇
  2003年   2篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1962年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
11.
12.
Abstract

In the present study, the effectiveness of water hyacinth and water lettuce was tested for the phytoremediation of landfill leachate for the period of 15?days. Fifteen plastic containers were used in experimental setup where aquatic plants were fitted as a floating bed with the help of thermo-pole sheet. It was observed that both plants significantly (p?<?0.05/p?<?0.01/p?<?0.001) reduce the physicochemical parameters pH, TDS, BOD, COD and heavy metals like Zn, Pb, Fe, Cu and Ni from landfill leachate. Maximum reduction in these parameters was obtained at 50% and 75% landfill leachate treatment and their removal rate gradually increased from day 3 to day 15 of the experiment. The maximum removal rate for heavy metals such as for Zn (80–90%), Fe (83–87%) and Pb (76–84%) was attained by Eichhornia crassipes and Pistia stratiotes. Value of bioconcentration and translocation factor was less than 1 which indicates the low transport of heavy metals from roots to the above-ground parts of the plants. Both these plants accumulate heavy metals inside their body without showing much reduction in growth and showing tolerance to all the present metals. Therefore, results obtained from the study suggest that these aquatic plants are suitable candidate for the removal of pollution load from landfill leachate.  相似文献   
13.
Plasmonics - Effect of different gold (Au) grating structures on light absorption in solar cell is investigated by finite elemental analysis using COMSOL multiphysics-RF module. The geometry of the...  相似文献   
14.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
15.
16.
Paeoninol and paeonin C, oligostilbene and monoterpene galactoside, have been isolated from the methanolic extract of the fruits of Paeonia emodi. Their structures have been assigned on the basis of spectral analysis including 1D and 2D NMR techniques. In addition, 4-hydroxybenzoic acid 3, gallic acid 4 and methyl gallate 5 have also been reported for the first time from this species. Compounds 1 and 2 have displayed potent inhibitory potential against enzyme lipoxygenase in a concentration-dependent fashion with the IC(50) values 0.77 and 99.5 microM, along with ABTS(.+) radical quenching activity with IC(50) values of 147.5 and 498.2 microM, respectively.  相似文献   
17.
A Plackett-Burman design was employed to develop and optimize a novel crosslinked calcium-aluminum-alginatepectinate oilisphere complex as a potential system for the in vitro site-specific release ofMentha piperita, an essential oil used for the treatment of irritable bowel syndrome. The physicochemical and textural properties (dependent variables) of this complex were found to be highly sensitive to changes in the concentration of the polymers (0%–1.5% wt/vol), crosslinkers (0%–4% wt/vol) and crosslinking reaction times (0.5–6 hours) (independent variables). Particle size analysis indicated both unimodal and bimodal populations with the highest frequency of 2 mm oilispheres. Oil encapsulation ranged from 6 to 35 mg/100 mg oilispheres. Gravimetric changes of the crosslinked matrix indicated significant ion sequestration and loss in an exponential manner, while matrix erosion followed Higuchi's cube root law. Among the various measured responses, the total fracture energy was the most suitable optimization objective (R 2 =0.88, Durbin-Watson Index=1.21%, Coefficient of Variation (CV)=33.21%). The Lagrangian technique produced no significant differences (P>.05) between the experimental and predicted total fracture energy values (0.0150 vs 0.0107 J). Artificial Neural Networks, as an alternative predictive tool of the total fracture energy, was highly accurate (final mean square error of optimal network epoch≈0.02). Fused-coated optimized oilispheres produced a 4-hour lag phase followed by zero-order kinetics (n>0.99), whereby analysis of release data indicated that diffusion (Fickian constantk 1=0.74 vs relaxation constantk 2=0.02) was the predominant release mechanism.  相似文献   
18.
The maximum productivity of -glucosidase by Saccharomyces cerevisiaerecombinants under the control of GALI promoter was 100 IU l–1 h–1. The highest productivity of -glucosidase by a S. cerevisiae recombinant was 16-fold more than that supported by Cellulomonas biazotea. The recombinants also co-produced ethanol from cellobiose: maximum product yield and productivity were 0.5 and 1.1 g ethanol g–1 cellobiose and g ethanol l–1 h–1, respectively.  相似文献   
19.
Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2''-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their lifespan.  相似文献   
20.
Present study describes rapid in vitro propagation of Caralluma tuberculata, a traditional medicinal plant, and antioxidant potential of calli and plants extracts. The highest callus induction rate (93.3%) with maximum weight of calli 5.2 g was achieved from shoot tip explants on MS medium supplemented with 9.04 μM 2,4-D and 4.44 μM BA. The maximum shoot induction rate (71.1%) with mean number of shoots 3.66 ± 1.53 and 4.6 cm average shoot length was observed on 13.32 μM BA, 4.52 μM 2,4-D and 2.89 μM GA3 appended in MS medium. The developed shoots were best rooted in the presence of 5.07 μM IAA with 3.0 ± 0.15 roots per plantlet. The plants were successfully acclimatized under in vivo conditions. The plants and calli extracts exhibited good antioxidant activities, however, plant extract activities were more pronounced. The phenolic compounds in plant and calli extracts were 0.16% and 0.057%, respectively. While the flavonoids were 0.092% in plant and 0.039% in calli extract. Total Phenolics, flavonoids; DPPH radical scavenging activity and reducing power potential distributed among different fractions depending upon polarity of the solvent. The highest DPPH scavenging activity and reducing power was exhibited by water fractions; 4.95 mg/mL and 0.729 OD at 10 mg/mL, respectively. The micropropagation protocol can be successfully used for large-scale multiplication and conservation of germplasm of this threatened plant. Furthermore, antioxidant value describes importance of this valuable plant as food and medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号