全文获取类型
收费全文 | 89篇 |
免费 | 8篇 |
专业分类
97篇 |
出版年
2022年 | 1篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 1篇 |
2014年 | 3篇 |
2013年 | 2篇 |
2012年 | 6篇 |
2011年 | 8篇 |
2010年 | 6篇 |
2009年 | 2篇 |
2008年 | 4篇 |
2007年 | 9篇 |
2006年 | 4篇 |
2005年 | 9篇 |
2004年 | 7篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 1篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1981年 | 3篇 |
1975年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有97条查询结果,搜索用时 27 毫秒
11.
Oil cakes and their biotechnological applications--a review 总被引:1,自引:0,他引:1
Oil cakes have been in use for feed applications to poultry, fish and swine industry. Being rich in protein, some of these have also been considered ideal for food supplementation. However, with increasing emphasis on cost reduction of industrial processes and value addition to agro-industrial residues, oil cakes could be ideal source of proteinaceous nutrients and as support matrix for various biotechnological processes. Several oil cakes, in particular edible oil cakes offer potential benefits when utilized as substrate for bioprocesses. These have been utilized for fermentative production of enzymes, antibiotics, mushrooms, etc. Biotechnological applications of oil cakes also include their usages for vitamins and antioxidants production. This review discusses various applications of oil cakes in fermentation and biotechnological processes, their value addition by implementation in feed and energy source (for the production of biogas, bio-oil) as well. 相似文献
12.
Aluise CD Miriyala S Noel T Sultana R Jungsuwadee P Taylor TJ Cai J Pierce WM Vore M Moscow JA St Clair DK Butterfield DA 《Free radical biology & medicine》2011,50(11):1630-1638
Doxorubicin (DOX), an anthracycline used to treat a variety of cancers, is known to generate intracellular reactive oxygen species. Moreover, many patients who have undergone chemotherapy complain of cognitive dysfunction often lasting years after cessation of the chemotherapy. Previously, we reported that intraperitoneal administration of DOX led to elevated TNF-α and oxidative stress in the plasma and brain of mice. However, the mechanisms involved in nontargeted tissue damage remain unknown. In this study, we measured plasma oxidative stress and cytokine levels in patients treated with DOX. We observed increased plasma protein carbonylation and elevation of TNF-α 6 h after DOX administration in the context of multiagent chemotherapy regimens. Importantly, patients not treated coincidentally with 2-mercaptoethane sulfonate (MESNA) showed statistically significantly increased plasma protein-bound 4-hydroxynonenal, whereas those who had been coincidentally treated with MESNA as part of their multiagent chemotherapy regimen did not, suggesting that concomitant administration of the antioxidant MESNA with DOX prevents intravascular oxidative stress. We demonstrate in a murine model that MESNA suppressed DOX-induced increased plasma oxidative stress indexed by protein carbonyls and protein-bound HNE, and also suppressed DOX-induced increased peripheral TNF-α levels. A direct interaction between DOX and MESNA was demonstrated by MESNA suppression of DOX-induced DCF fluorescence. Using redox proteomics, we identified apolipoprotein A1 (APOA1) in both patients and mice after DOX administration as having increased specific carbonyl levels. Macrophage stimulation studies showed that oxidized APOA1 increased TNF-α levels and augmented TNF-α release by lipopolysaccharide, effects that were prevented by MESNA. This study is the first to demonstrate that DOX oxidizes plasma APOA1, that oxidized APOA1 enhances macrophage TNF-α release and thus could contribute to potential subsequent TNF-α-mediated toxicity, and that MESNA interacts with DOX to block this mechanism and suggests that MESNA could reduce systemic side effects of DOX. 相似文献
13.
Sengupta S Bisson WH Mathew LK Kolluri SK Tanguay RL 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2012,156(2):121-129
Since their characterization, glucocorticoids (GCs), the most commonly prescribed immunomodulatory drugs, have undergone numerous structural modifications designed to enhance their activity. In vivo assessment of these corticosteroid analogs is essential to understand the difference in molecular signaling of the ligands that share the corticosteroid backbone. Our research identified a novel function of GCs as modulators of tissue regeneration and demonstrated that GCs activate the glucocorticoid receptor (GR) to inhibit early stages of tissue regeneration in zebrafish (Danio rerio). We utilized this phenomenon to assess the effect of different GC analogs on tissue regeneration and identified that some GCs such as beclomethasone dipropionate (BDP) possess inhibitory properties, while others, such as dexamethasone and hydrocortisone have no effect on regeneration. We performed in silico molecular docking and dynamic studies and demonstrated that type and size of substitution at the C17 position of the cortisol backbone confer a unique stable conformation to GR on ligand binding that is critical for inhibitory activity. In the field of tissue regeneration, our study is one of the first Structure Activity Relationship (SAR) investigations performed in vertebrates demonstrating that the in vivo tissue regeneration model is a powerful tool to probe structure function relationships, to understand regenerative biology, and to assist in rational drug design. 相似文献
14.
Mukhopadhyay S Barnés CM Haskel A Short SM Barnes KR Lippard SJ 《Bioconjugate chemistry》2008,19(1):39-49
The integrins alpha vbeta3 and alpha vbeta5 and the membrane-spanning surface protein aminopeptidase N (APN) are highly expressed in tumor-induced angiogenesis, making them attractive targets for therapeutic intervention. Both integrins and APN recognize a broad range of peptides containing RGD (Arg-Gly-Asp) and NGR (Asn-Gly-Arg) motifs, respectively. Here, we describe the design, synthesis, and characterization of a series of mono- and difunctionalized platinum(IV) complexes in which a conjugated peptide motif, containing RGD, (CRGDC)c, (RGDfK)c, or NGR, is appended as a "tumor-homing device" to target tumor endothelial cells selectively over healthy cells. Platinum(IV)-peptide complexes with nonspecific amino acids or peptide moieties were prepared as controls. Concentration-response curves of these compounds were evaluated against primary proliferating endothelial cells and tumor cell lines and compared to those of cisplatin, a well-described platinum-based chemotherapeutic agent. The Pt(IV)-RGD conjugates were highly and specifically cytotoxic to cell lines containing alpha vbeta3 and alpha vbeta5, approaching the activity of cisplatin. The Pt(IV)-NGR complexes were less active than Pt(IV)-RGD-containing compounds but more active than nonspecific Pt-peptide controls. Integrin alpha vbeta3 mediated, at least in part, the anti-proliferative effect of a Pt(IV)-RGD conjugate, as demonstrated by a decreased inhibitory response when endothelial cells were either (1) incubated with an excess of alpha vbeta3/alpha vbeta5-specific RGD pentapeptides or (2) transfected with RNAi for beta 3, but not beta 1, integrins. These results suggest a rational approach to improved chemotherapy with Pt(IV)-peptide conjugates by selective drug delivery to the tumor compartment. 相似文献
15.
Yan Nie Cristina Viola Christoph Bieniossek Simon Trowitzsch Lakshmi Sumitra Vijay-achandran Maxime Chaillet Frederic Garzoni Imre Berger 《Current Genomics》2009,10(8):558-572
We are witnessing tremendous advances in our understanding of the organization of life. Complete genomes are being deciphered with ever increasing speed and accuracy, thereby setting the stage for addressing the entire gene product repertoire of cells, towards understanding whole biological systems. Advances in bioinformatics and mass spectrometric techniques have revealed the multitude of interactions present in the proteome. Multiprotein complexes are emerging as a paramount cornerstone of biological activity, as many proteins appear to participate, stably or transiently, in large multisubunit assemblies. Analysis of the architecture of these assemblies and their manifold interactions is imperative for understanding their function at the molecular level. Structural genomics efforts have fostered the development of many technologies towards achieving the throughput required for studying system-wide single proteins and small interaction motifs at high resolution. The present shift in focus towards large multiprotein complexes, in particular in eukaryotes, now calls for a likewise concerted effort to develop and provide new technologies that are urgently required to produce in quality and quantity the plethora of multiprotein assemblies that form the complexome, and to routinely study their structure and function at the molecular level. Current efforts towards this objective are summarized and reviewed in this contribution.Key Words: Proteome, interactome, multiprotein assemblies, structural genomics, robotics, multigene expression, multiBac, BEVS, ACEMBL, complexomics. 相似文献
16.
Vasudevan A Oh TK Park JS Lakshmi SV Choi BK Kim SH Lee HJ Ji J Kim JH Ganapathi A Kim SC Choi CW 《Plant cell reports》2008,27(11):1731-1740
Two transgenic lines, of Nicotiana benthamiana expressing Turnip crinkle virus (TCV)-coat protein (CP) gene with contrasting phenotype, the highest (#3) and the lowest (#18) CP expressers, were selected
and challenged with the homologous TCV. The former, the highest expresser, showed nearly five times more CP expression than
the latter. Progenies of #3 and #18 lines showed 30 and 100% infection rates, respectively. The infected progenies of #3 line
showed mild and delayed symptom with TCV. This is a coat protein-mediated resistance (CP-MR), and its resistance level is
directly proportional to CP transgene expression. However, CP-MR of the transgenic plants was specific only for TCV but not
for heterologous viruses. Newly growing leaves of those infected progenies of #3 line did not show any visible symptoms at
4-week post-inoculation (wpi) with TCV, suggesting a reversal from infection. This was confirmed by RT-PCR analysis with the
disappearance of the target at 4 wpi. This is a case of RNA-mediated resistance, and a threshold level of transgene expression
may be needed to achieve the silent state. To confirm the RNA silencing, we infiltrated Agrobacterium carrying TCV-CP into leaves of progenies of #3 and performed RT-PCR analysis. The results indicate that TCV-CP’s suppressor
activity against RNA silencing itself can be silenced by the homologous expression of TCV-CP in the transgenic plants. The
transgenic plants containing TCV-CP seem to be a model system to study viral protection mediated by a combination of protein
and RNA silencing.
Ayyappan Vasudevan and Tae-Kyun Oh have contributed equally in this study. 相似文献
17.
Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus 总被引:2,自引:0,他引:2
Roopesh K Ramachandran S Nampoothiri KM Szakacs G Pandey A 《Bioresource technology》2006,97(3):506-511
Comparisons were made for phytase production using wheat bran (WB) and oilcakes as substrates in solid-state fermentation (SSF) by Mucor racemosus NRRL 1994. WB was also used as mixed substrate with oil cakes. Sesame oil cake (SOC) served as the best carbon source for phytase synthesis by the fungal strain as it gave the highest enzyme titres (30.6 U/gds). Groundnut oil cake (GOC) also produced a reasonably good quantity of enzyme (24.3 U/gds). Enzyme production on WB was surprisingly much less (almost 3.5 times less in comparison to SOC). Mixing WB with SOC (1:1 ratio) resulted in better phytase activity (32.2 U/gds). Optimization of various process parameters such as incubation time, initial moisture content and inoculum concentration was carried out using the single variable mode optimization technique. Under optimized conditions, the production of phytase reached 44.5 U/gds, which was almost 1.5-fold higher than the highest yield obtained with any individual substrate used in this study and was more than 4-fold higher than that obtained from WB. 相似文献
18.
Time course studies on the functional evaluation of experimental chronic myocardial infarction in rats 总被引:2,自引:0,他引:2
Manikandan P Sumitra M Nayeem M Manohar BM Lokanadam B Vairamuthu S Subramaniam S Puvanakrishnan R 《Molecular and cellular biochemistry》2004,267(1-2):47-58
In vivo models of myocardial infarction induced by coronary artery ligation (CAL) in rats usually suffer from high early mortality and a low rate of induction. This study investigated the time course initiation of chronic myocardial infarction (CMI) in albino rats and the possibility of reducing early mortality rate due to myocardial infarction by modification of the surgical technique. CAL was carried out by passing the suture through the epicardial layer around the midway of the left anterior descending coronary artery including a small area of the myocardium to avoid mechanical damage to the heart geometry. In addition, the role of endothelin-1 (ET-1) in rat heart with congestive heart failure was critically assessed. Time course initiation experiments were designed by sacrificing the animals at different time intervals and by carrying out physiological, biochemical, histopathological, electron microscopical and immunohistochemical studies. Specific markers of myocardial injury, viz. cardiac troponin-T (cTnT), high sensitivity C-reactive protein, lactate dehydrogenase and fibrinogen were measured at different time points. Serum marker enzymes and activities of lysosomal hydrolases were found to be elevated on the eighth day post-ligation. Histopathological studies demonstrated focal areas showing fibrovascular tissue containing fibroblasts, collagenous ground substance and numerous small capillaries replacing cardiac muscle fibers. Transmission electron micrographs exhibited mitochondrial changes of well-developed irreversible cardiac injury, viz. swelling, disorganization of cristae, appearance of mitochondrial amorphous matrix densities, significant distortion of muscle fibers and distinct disruption of the intercalated discs. Immunoblotting studies confirmed the presence of alpha 2-macroglobulin which supported the inflammatory response. The severity of the CMI was inferred by the measurement of the level of ET-1 in plasma and left ventricle which was significantly higher in the CMI rats than in the sham-operated rats. Immunohistochemical studies at different time intervals showed that there was a significant immunoexpression of ET-1 on the eighth day post-ligation. This study conclusively showed that ligation of left anterior descending artery minimized mortality and ET-1 was expressed during CMI. 相似文献
19.
Vijayachandran LS Viola C Garzoni F Trowitzsch S Bieniossek C Chaillet M Schaffitzel C Busso D Romier C Poterszman A Richmond TJ Berger I 《Journal of structural biology》2011,175(2):198-208
Multiprotein complexes catalyze vital biological functions in the cell. A paramount objective of the SPINE2 project was to address the structural molecular biology of these multiprotein complexes, by enlisting and developing enabling technologies for their study. An emerging key prerequisite for studying complex biological specimens is their recombinant overproduction. Novel reagents and streamlined protocols for rapidly assembling co-expression constructs for this purpose have been designed and validated. The high-throughput pipeline implemented at IGBMC Strasbourg and the ACEMBL platform at the EMBL Grenoble utilize recombinant overexpression systems for heterologous expression of proteins and their complexes. Extension of the ACEMBL platform technology to include eukaryotic hosts such as insect and mammalian cells has been achieved. Efficient production of large multicomponent protein complexes for structural studies using the baculovirus/insect cell system can be hampered by a stoichiometric imbalance of the subunits produced. A polyprotein strategy has been developed to overcome this bottleneck and has been successfully implemented in our MultiBac baculovirus expression system for producing multiprotein complexes. 相似文献