首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   10篇
  114篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   9篇
  2006年   4篇
  2005年   9篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1981年   3篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有114条查询结果,搜索用时 28 毫秒
11.
A series of organoselenocyanate compounds 4a-d were synthesized utilizing 1,8-naphthalic anhydride as the building unit. These compounds were evaluated for their antioxidative activities against DMBA-PMA-induced oxidative stress in a two-stage mouse skin carcinogenic model. Compound 4d was found to have the maximum antioxidative property in comparison with the other compounds. Also, the pretreatment group showed better results than the concomitant treatment groups.  相似文献   
12.
Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.  相似文献   
13.
Callus cultures were established from stem explants of Ruscus hypophyllum on a modified basal medium of Murashige and Skoog (1962) supplemented with 1 mg l-1 2,4-D+0.1 mg l-1 BAP. The optimal 2,4-D concentration for promoting shoot bud formation and growth was 0.05 mg l-1 along with 0.5 mg l-1 BAP. Sixty percent of rootless shoots produced flowers on the regenerating medium. Rooting was induced when shoots were transferred to half strength MS inorganic salts supplemented with 2 mg l-1 IBA. Eighty percent of plants transferred to soil have survived.  相似文献   
14.
The pathogenesis of HIV-associated neurocognitive disorder (HAND) is modulated by host genetic susceptibility factors such as Matrix metalloproteinases (MMPs). Promoter polymorphism of MMP-1 and MMP-3 may modify the expression of the gene. Hence, we evaluated the association of MMP-1-16072G/1G and MMP-3-1612 5A/6A polymorphisms with development of HAND and the modulation of pathogenesis of HAND. We enrolled a total of 180 individuals, 50 HIV-infected individuals with HAND, 130 without HAND, and 150 healthy controls. Polymorphism of MMP-1 and MMP-3 were genotyped by PCR-RFLP. MMP-1-1607 2G1G, -16071G/2G-1G/1G genotypes and -1607 1G allele were associated with the development of HAND (OR = 1.64, P = 0.05; OR = 1.45, P = 0.04; OR = 1.69, P = 0.05). MMP-1-16071G1G, MMP-3-16125A5A genotypes increased the risk for the development of HAND (OR = 1.78, P = 0.25; OR = 2.39, P = 0.13). MMP-3-1612 5A5A, -1612 6A/5A-5A/5A genotypes and -1612 5A allele were associated with the reduced risk of HAND (OR = 0.40, P = 0.05; OR = 0.53, P = 0.04; OR = 0.40, P = 0.01). Haplotype 5A1G increased the risk of development of HAND (OR = 1.93, P = 0.05). As observed in advanced HIV disease stage, MMP-1-1607 1G1G genotype enhance the risk for advancement of HIV disease (OR = 1.69, P = 0.89). MMP-3-1612 6A5A genotype showed higher risk for development of HAND in alcohol users (0R = 1.65, P = 0.44). MMP-1 genotype may have an influence on development of HAND whereas MMP3-1612 5A5A genotype may reduce risk for pathogenesis of HAND.  相似文献   
15.
16.
Oil cakes and their biotechnological applications--a review   总被引:1,自引:0,他引:1  
Oil cakes have been in use for feed applications to poultry, fish and swine industry. Being rich in protein, some of these have also been considered ideal for food supplementation. However, with increasing emphasis on cost reduction of industrial processes and value addition to agro-industrial residues, oil cakes could be ideal source of proteinaceous nutrients and as support matrix for various biotechnological processes. Several oil cakes, in particular edible oil cakes offer potential benefits when utilized as substrate for bioprocesses. These have been utilized for fermentative production of enzymes, antibiotics, mushrooms, etc. Biotechnological applications of oil cakes also include their usages for vitamins and antioxidants production. This review discusses various applications of oil cakes in fermentation and biotechnological processes, their value addition by implementation in feed and energy source (for the production of biogas, bio-oil) as well.  相似文献   
17.
Doxorubicin (DOX), an anthracycline used to treat a variety of cancers, is known to generate intracellular reactive oxygen species. Moreover, many patients who have undergone chemotherapy complain of cognitive dysfunction often lasting years after cessation of the chemotherapy. Previously, we reported that intraperitoneal administration of DOX led to elevated TNF-α and oxidative stress in the plasma and brain of mice. However, the mechanisms involved in nontargeted tissue damage remain unknown. In this study, we measured plasma oxidative stress and cytokine levels in patients treated with DOX. We observed increased plasma protein carbonylation and elevation of TNF-α 6 h after DOX administration in the context of multiagent chemotherapy regimens. Importantly, patients not treated coincidentally with 2-mercaptoethane sulfonate (MESNA) showed statistically significantly increased plasma protein-bound 4-hydroxynonenal, whereas those who had been coincidentally treated with MESNA as part of their multiagent chemotherapy regimen did not, suggesting that concomitant administration of the antioxidant MESNA with DOX prevents intravascular oxidative stress. We demonstrate in a murine model that MESNA suppressed DOX-induced increased plasma oxidative stress indexed by protein carbonyls and protein-bound HNE, and also suppressed DOX-induced increased peripheral TNF-α levels. A direct interaction between DOX and MESNA was demonstrated by MESNA suppression of DOX-induced DCF fluorescence. Using redox proteomics, we identified apolipoprotein A1 (APOA1) in both patients and mice after DOX administration as having increased specific carbonyl levels. Macrophage stimulation studies showed that oxidized APOA1 increased TNF-α levels and augmented TNF-α release by lipopolysaccharide, effects that were prevented by MESNA. This study is the first to demonstrate that DOX oxidizes plasma APOA1, that oxidized APOA1 enhances macrophage TNF-α release and thus could contribute to potential subsequent TNF-α-mediated toxicity, and that MESNA interacts with DOX to block this mechanism and suggests that MESNA could reduce systemic side effects of DOX.  相似文献   
18.
Since their characterization, glucocorticoids (GCs), the most commonly prescribed immunomodulatory drugs, have undergone numerous structural modifications designed to enhance their activity. In vivo assessment of these corticosteroid analogs is essential to understand the difference in molecular signaling of the ligands that share the corticosteroid backbone. Our research identified a novel function of GCs as modulators of tissue regeneration and demonstrated that GCs activate the glucocorticoid receptor (GR) to inhibit early stages of tissue regeneration in zebrafish (Danio rerio). We utilized this phenomenon to assess the effect of different GC analogs on tissue regeneration and identified that some GCs such as beclomethasone dipropionate (BDP) possess inhibitory properties, while others, such as dexamethasone and hydrocortisone have no effect on regeneration. We performed in silico molecular docking and dynamic studies and demonstrated that type and size of substitution at the C17 position of the cortisol backbone confer a unique stable conformation to GR on ligand binding that is critical for inhibitory activity. In the field of tissue regeneration, our study is one of the first Structure Activity Relationship (SAR) investigations performed in vertebrates demonstrating that the in vivo tissue regeneration model is a powerful tool to probe structure function relationships, to understand regenerative biology, and to assist in rational drug design.  相似文献   
19.
The integrins alpha vbeta3 and alpha vbeta5 and the membrane-spanning surface protein aminopeptidase N (APN) are highly expressed in tumor-induced angiogenesis, making them attractive targets for therapeutic intervention. Both integrins and APN recognize a broad range of peptides containing RGD (Arg-Gly-Asp) and NGR (Asn-Gly-Arg) motifs, respectively. Here, we describe the design, synthesis, and characterization of a series of mono- and difunctionalized platinum(IV) complexes in which a conjugated peptide motif, containing RGD, (CRGDC)c, (RGDfK)c, or NGR, is appended as a "tumor-homing device" to target tumor endothelial cells selectively over healthy cells. Platinum(IV)-peptide complexes with nonspecific amino acids or peptide moieties were prepared as controls. Concentration-response curves of these compounds were evaluated against primary proliferating endothelial cells and tumor cell lines and compared to those of cisplatin, a well-described platinum-based chemotherapeutic agent. The Pt(IV)-RGD conjugates were highly and specifically cytotoxic to cell lines containing alpha vbeta3 and alpha vbeta5, approaching the activity of cisplatin. The Pt(IV)-NGR complexes were less active than Pt(IV)-RGD-containing compounds but more active than nonspecific Pt-peptide controls. Integrin alpha vbeta3 mediated, at least in part, the anti-proliferative effect of a Pt(IV)-RGD conjugate, as demonstrated by a decreased inhibitory response when endothelial cells were either (1) incubated with an excess of alpha vbeta3/alpha vbeta5-specific RGD pentapeptides or (2) transfected with RNAi for beta 3, but not beta 1, integrins. These results suggest a rational approach to improved chemotherapy with Pt(IV)-peptide conjugates by selective drug delivery to the tumor compartment.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号