首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   990篇
  免费   86篇
  国内免费   1篇
  2023年   4篇
  2022年   7篇
  2021年   24篇
  2020年   7篇
  2019年   13篇
  2018年   15篇
  2017年   19篇
  2016年   33篇
  2015年   40篇
  2014年   46篇
  2013年   51篇
  2012年   76篇
  2011年   74篇
  2010年   48篇
  2009年   43篇
  2008年   50篇
  2007年   45篇
  2006年   48篇
  2005年   39篇
  2004年   28篇
  2003年   44篇
  2002年   38篇
  2001年   38篇
  2000年   27篇
  1999年   28篇
  1998年   8篇
  1996年   8篇
  1995年   11篇
  1994年   7篇
  1993年   7篇
  1992年   12篇
  1991年   10篇
  1990年   16篇
  1989年   12篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   9篇
  1980年   3篇
  1977年   4篇
  1976年   3篇
  1975年   10篇
  1974年   4篇
  1973年   5篇
  1971年   3篇
  1967年   2篇
排序方式: 共有1077条查询结果,搜索用时 203 毫秒
101.
Respiratory syncytial virus (RSV) infection is one of the major causes of respiratory tract infection for which no vaccine or antiviral treatment is available. The RSV NS1 protein seems to antagonize the host interferon (IFN) response; however, its mechanism is unknown. Here, we used a plasmid-borne small interfering RNA targeting the NS1 gene (siNS1) to examine the role of NS1 in modulating RSV infection. RSV replication was reduced in A549 cells, but not IFN-deficient Vero cells, transfected with siNS1. siNS1 induced upregulated expression of IFN-beta and IFN-inducible genes in A549 cells. siNS1-transfected human dendritic cells, upon RSV infection, produced elevated type-1 IFN and induced differentiation of naive CD4+ T cells to T helper type 1 (TH1) cells. Mice treated intranasally with siNS1 nanoparticles before or after infection with RSV showed substantially decreased virus titers in the lung and decreased inflammation and airway reactivity compared to controls. Thus, siNS1 nanoparticles may provide an effective inhibition of RSV infection in humans.  相似文献   
102.
Aminoacyl-tRNA synthetases (ARSs) are key enzymes involved in protein translation, and both cytosolic and organellar forms are present in the genomes of eukaryotes. In this study, we investigated cellular effects of depletion of organellar forms of ARS using virus-induced gene silencing (VIGS) in Nicotiana benthamiana. VIGS of NbERS and NbSRS, which encode organellar GluRS and SerRS, respectively, resulted in a severe leaf-yellowing phenotype. The NbERS and NbSRS genes were ubiquitously expressed in plant tissues, and induced in response to light. Green fluorescent protein (GFP) fusion proteins of the full-length glutamyl-tRNA synthetase (ERS) and seryl-tRNA synthetase (SRS) of Arabidopsis and GFP fusions to the N-terminal extension of these proteins were all dualtargeted to chloroplasts and mitochondria. At the cell level, depletion of NbERS and NbSRS resulted in dramatically reduced numbers of chloroplasts with reduced sizes and chlorophyll content. The numbers and/or physiology of mitochondria were also severely affected. The abnormal chloroplasts lacked most of the thylakoid membranes and appeared to be degenerating, whereas some of them showed doublet morphology, indicating defective chloroplast division. Pulse-field gel electrophoresis analyses demonstrated that chloroplast DNA in subgenomic sizes is the predominant form in the abnormal chloroplasts. Interestingly, despite severe abnormalities in chloroplasts and mitochondria, expression of many nuclear genes encoding chloroplastor mitochondria-targeted proteins, and chlorophyll biosynthesis genes remained unchanged in the ERS and SRS VIGS lines. This is the first report to analyze the effect of ARS disruption on organelle development in plants.  相似文献   
103.
Treatment with C. mukul and O. sanctum, showed a significant decrease in cholesterol and triglyceride levels respectively. O. sanctum also significantly increased serum HDL-cholesterol compared to control. Serum MDA levels were significantly reduced in all the treated groups compared to control suggesting that each of the drugs under study were effective in their free radical scavenging action. Erythrocyte SOD activity was increased in all the treatment groups with C. mukul showing the maximum effect followed by O. sanctum, folic acid and ramipril. The erythrocyte CAT activity was significantly increased in all the drug treated groups with maximum increase seen in O. sanctum and ramipril treated groups, whereas lesser effects were observed with C. mukul and folic acid groups. Thus, the indigenous drugs, C. mukul and O. sanctum had beneficial effect on hypercholesterolemic rabbit model, both in terms of lipid profile as well as antioxidant potential. Ocimum sanctum was found to be the most promising of all the drugs. Moreover, it could be hypothesized that these plant products along with folic acid and ramipril can be explored for synergistic effect for treatment for hypercholesterolemic conditions.  相似文献   
104.
We examined the effects of genetic transformation by Agrobacterium rhizogenes on the production of tylophorine, a phenanthroindolizidine alkaloid, in the Indian medicinal plant, Tylophora indica. Transformed roots induced by the bacterium grew in axenic culture and produced shoots or embryogenic calli in the absence of hormone treatments. However, hormonal treatment was required to regenerate shoots in root explants of wild type control plants. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes, which include, short internodes, small and wrinkled leaves, more branches and numerous plagiotropic roots. Plants regenerated from transformed roots showed increased biomass accumulation (350–510% in the roots and 200–320% in the whole plants) and augmented tylophorine content (20–60%) in the shoots, resulting in a 160–280% increase in tylophorine production in different clones grown in vitro.  相似文献   
105.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder disease. Ten percent of the ALS patients are congenital (familial ALS), and the other 90% are sporadic ALS (SALS). It has been shown that mutations found in the Cu,Zn-SOD cause 20% of the familial ALS due to its low enzyme activity. We hypothesized that heavy metals may interfere the structure of Cu,Zn-SOD protein to suppress its activity in some of the SALS. In this study, we expressed and characterized the recombinant human Cu,Zn-SOD under various concentrations of Cu(2+), Zn(2+), and Cd(2+). By atomic absorption spectrophotometry, we demonstrated that adding of cadmium significantly increased the content of cadmium ion, but reduced its Zn(2+) content and enzyme activity of the Cu,Zn-SOD protein. The data of circular dichroism spectra demonstrated that the secondary structure of Cu,Zn-SOD/Cd is different from Cu,Zn-SOD, but close to apo-SOD. In addition to the effect of cadmium on Cu,Zn-SOD, cadmium was also shown to induce neural cell apoptosis. To further investigate the mechanism of neural cell apoptosis induced by cadmium, we used proteomics to analyze the altered protein expressions in neural cells treated with cadmium. The altered proteins include cellular structural proteins, stress-related and chaperone proteins, proteins involved in reactive oxygen species (ROS), enzyme proteins, and proteins that mediated cell death and survival signaling. Taken together, in this paper, we demonstrate that cadmium decreases the content of Zn(2+), changes the conformation of Cu,Zn-SOD protein to decrease its enzyme activity, and causes oxidative stress-induced neural cell apoptosis.  相似文献   
106.
The Cbl family of proteins downregulate epidermal growth factor receptor (Egfr) signaling via receptor internalization and destruction. These proteins contain two functional domains, a RING finger domain with E3 ligase activity, and a proline rich domain mediating the formation of protein complexes. The Drosophila cbl gene encodes two isoforms, D-CblS and D-CblL. While both contain a RING finger domain, the proline rich domain is absent from D-CblS. We demonstrate that expression of either isoform is sufficient to rescue both the lethality of a D-cbl null mutant and the adult phenotypes characteristic of Egfr hyperactivation, suggesting that both isoforms downregulate Egfr signaling. Interestingly, targeted overexpression of D-CblL, but not D-CblS, results in phenotypes characteristic of reduced Egfr signaling and suppresses the effect of constitutive Egfr activation. The level of D-CblL was significantly correlated with the phenotypic severity of reduced Egfr signaling, suggesting that D-CblL controls the efficiency of downregulation of Egfr signaling. Furthermore, reduced dynamin function suppresses the effects of D-CblL overexpression in follicle cells, suggesting that D-CblL promotes internalization of activated receptors. D-CblL is detected in a punctate cytoplasmic pattern, whereas D-CblS is mainly localized at the follicle cell cortex. Therefore, D-CblS and D-CblL may downregulate Egfr through distinct mechanisms.  相似文献   
107.
IL-1 beta breaks tolerance through expansion of CD25+ effector T cells   总被引:1,自引:0,他引:1  
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4(+)CD25(+)FoxP3(-) effector/memory T cells, attenuates CD4(+)CD25(+)FoxP3(+) regulatory T cell function, and allows escape of CD4(+)CD25(-) autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.  相似文献   
108.
Payandeh J  Pai EF 《The EMBO journal》2006,25(16):3762-3773
We describe the CorA Mg(2+) transporter homologue from Thermotoga maritima in complex with 12 divalent cations at 3.7 A resolution. One metal is found near the universally conserved GMN motif, apparently stabilized within the transmembrane region. This portion of the selectivity filter might discriminate between the size and preferred coordination geometry of hydrated substrates. CorA may further achieve specificity by requiring the sequential dehydration of substrates along the length of its approximately 55 A long pore. Ten metal sites identified within the cytoplasmic funnel domain are linked to long extensions of the pore helices and regulate the transport status of CorA. We have characterized this region as an intrinsic divalent cation sensor and provide evidence that it functions as a Mg(2+)-specific homeostatic molecular switch. A proteolytic protection assay, biophysical data, and comparison to a soluble domain structure from Archaeoglobus fulgidus have revealed the potential reaction coordinate for this diverse family of transport proteins.  相似文献   
109.
D-apiose serves as the binding site for borate cross-linking of rhamnogalacturonan II (RG-II) in the plant cell wall, and biosynthesis of D-apiose involves UDP-D-apiose/UDP-D-xylose synthase catalyzing the conversion of UDP-D-glucuronate to a mixture of UDP-D-apiose and UDP-D-xylose. In this study we have analyzed the cellular effects of depletion of UDP-D-apiose/UDP-D-xylose synthases in plants by using virus-induced gene silencing (VIGS) of NbAXS1 in Nicotiana benthamiana. The recombinant NbAXS1 protein exhibited UDP-D-apiose/UDP-D-xylose synthase activity in vitro. The NbAXS1 gene was expressed in all major plant organs, and an NbAXS1-green fluorescent protein fusion protein was mostly localized in the cytosol. VIGS of NbAXS1 resulted in growth arrest and leaf yellowing. Microscopic studies of the leaf cells of the NbAXS1 VIGS lines revealed cell death symptoms including cell lysis and disintegration of cellular organelles and compartments. The cell death was accompanied by excessive formation of reactive oxygen species and by induction of various protease genes. Furthermore, abnormal wall structure of the affected cells was evident including excessive cell wall thickening and wall gaps. The mutant cell walls contained significantly reduced levels of D-apiose as well as 2-O-methyl-L-fucose and 2-O-methyl-D-xylose, which serve as markers for the RG-II side chains B and A, respectively. These results suggest that VIGS of NbAXS1 caused a severe deficiency in the major side chains of RG-II and that the growth defect and cell death was likely caused by structural alterations in RG-II due to a D-apiose deficiency.  相似文献   
110.
Pulsed laser-induced autofluorescence spectroscopic studies of pathologically certified normal, premalignant, and malignant oral tissues were carried out at 325 nm excitation. The spectral analysis and classification for discrimination among normal, premalignant, and malignant conditions were performed using principal component analysis (PCA) and artificial neural network (ANN) separately on the same set of spectral data. In case of PCA, spectral residuals, Mahalanobis distance, and scores of factors were used for discrimination among normal, premalignant, and malignant cases. In ANN, parameters like mean, spectral residual, standard deviation, and total energy were used to train the network. The ANN used in this study is a classical multiplayer feed-forward type with a back-propagation algorithm for the training of the network. The specificity and sensitivity were determined in both classification schemes. In the case of PCA, they are 100 and 92.9%, respectively, whereas for ANN they are 100 and 96.5% for the data set considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号