首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   5篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   9篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   9篇
  2007年   10篇
  2006年   2篇
  2005年   14篇
  2004年   10篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有178条查询结果,搜索用时 546 毫秒
81.
(R)-Apomorphine (1) has the potential to reduce the accumulation of amyloid β-protein (Aβ42), a causative agent of Alzheimer’s disease (AD). Although the inhibition of Aβ42 aggregation by 1 is ascribable to the antioxidative effect of its phenol moiety, its inhibitory mechanism at the molecular level remains to be fully elucidated. LC–MS and UV analyses revealed that 1 is autoxidized during incubation to produce an unstable o-quinone form (2), which formed a Michael adduct with Lys 16 and 28 of Aβ42. A further autoxidized form of 1 (3) with o-quinone and phenanthrene moieties suppressed Aβ42 aggregation comparable to 1, whereas treating 1 with a reductant, tris(2-carboxyethyl)phosphine diminished its inhibitory activity. 1H-15N SOFAST-HMQC NMR studies suggested that 1 interacts with Arg5, His13,14, Gln15, and Lys16 of the Aβ42 monomer. These regions form intermolecular β-sheets in Aβ42 aggregates. Since 3 did not perturb the chemical shift of monomeric Aβ42, we performed aggregation experiments using 1,1,1,3,3,3-hexafluoro-2-propanol-treated Aβ42 to investigate whether 3 associates with Aβ42 oligomers. Compounds 1 and 3 delayed the onset of the oligomer-driven nucleation phase. Despite their cytotoxicity, they did not exacerbate Aβ42-mediated neurotoxicity in SH-SY5Y neuroblastoma cells. These results demonstrate that extension of the conjugated system in 1 by autoxidation can promote its planarity, which is required for intercalation into the β-sheet of Aβ42 nuclei, thereby suppressing further aggregation.  相似文献   
82.
We isolated a full-length MDR1 cDNA from human adrenal where P-glycoprotein is expressed at high level. The deduced amino acid sequence shows two amino acid differences from the sequence of P-glycoprotein obtained from colchicine-selected multidrug resistant cultured cells. The amino acid substitution Gly----Val at codon 185 in P-glycoprotein from colchicine resistant cells occurred during selection of cells in colchicine. As previously reported, cells transfected with the MDR1 cDNA carrying Val185 acquire increased resistance to colchicine compared to other drugs. The other amino acid substitution Ser----Ala at codon 893 probably reflects genetic polymorphism. The MDR1 gene, the major member of the P-glycoprotein gene family expressed in human adrenal, is sufficient to confer multidrug-resistance on culture cells.  相似文献   
83.
84.
Human erythrocytes are continuously exposed to glucose, which reacts with the amino terminus of the β-chain of hemoglobin (Hb) to form glycated Hb, HbA1c, levels of which increase with the age of the circulating cell. In contrast to extensive insights into glycation of hemoglobin, little is known about glycation of erythrocyte membrane proteins. In the present study, we explored the conditions under which glucose and ribose can glycate spectrin, both on the intact membrane and in solution and the functional consequences of spectrin glycation. Although purified spectrin could be readily glycated, membrane-associated spectrin could be glycated only after ATP depletion and consequent translocation of phosphatidylserine (PS) from the inner to the outer lipid monolayer. Glycation of membrane-associated spectrin led to a marked decrease in membrane deformability. We further observed that only PS-binding spectrin repeats are glycated. We infer that the absence of glycation in situ is the consequence of the interaction of the target lysine and arginine residues with PS and thus is inaccessible for glycation. The reduced membrane deformability after glycation in the absence of ATP is likely the result of the inability of the glycated spectrin repeats to undergo the obligatory unfolding as a consequence of interhelix cross-links. We thus postulate that through the use of an ATP-driven phospholipid translocase (flippase), erythrocytes have evolved a protective mechanism against spectrin glycation and thus maintain their optimal membrane function during their long circulatory life span.  相似文献   
85.
86.
Human embryonic stem cells (hESCs) are pluripotent stem cells from early embryos, and their self-renewal capacity depends on the sustained expression of hESC-specific molecules and the suppressed expression of differentiation-associated genes. To discover novel molecules expressed on hESCs, we generated a panel of monoclonal antibodies against undifferentiated hESCs and evaluated their ability to mark cancer cells, as well as hESCs. MAb7 recognized undifferentiated hESCs and showed a diffuse band with molecular mass of >239 kDa in the lysates of hESCs. Although some amniotic epithelial cells expressed MAb7 antigen, its expression was barely detected in normal human keratinocytes, fibroblasts, or endothelial cells. The expression of MAb7 antigen was observed only in pancreatic and gastric cancer cells, and its levels were elevated in metastatic and poorly differentiated cancer cell lines. Analyses of MAb7 antigen suggested that the clustered NeuAcα2–3Galβ O-linked oligosaccharides on DMBT1 (deleted in malignant brain tumors 1) were critical for MAb7 binding in cancer cells. Although features of MAb7 epitope were similar with those of TRA-1–60, distribution of MAb7 antigen in cancer cells was different from that of TRA-1–60 antigen. Exposure of a histone deacetylase inhibitor to differentiated gastric cancer MKN74 cells evoked the expression of MAb7 antigen, whereas DMBT1 expression remained unchanged. Cell sorting followed by DNA microarray analyses identified the down-regulated genes responsible for the biosynthesis of MAb7 antigen in MKN74 cells. In addition, treatment of metastatic pancreatic cancer cells with MAb7 significantly abrogated the adhesion to endothelial cells. These results raised the possibility that MAb7 epitope is a novel marker for undifferentiated cells such as hESCs and cancer stem-like cells and plays a possible role in the undifferentiated cells.  相似文献   
87.
88.
We developed an automated apparatus for rapid releasing of O-glycans from mucin-type glycoproteins [Anal. Biochem. 371 (2007) 52-61; Anal. Chem. 82 (2010) 7436-7443] and applied the device to analyze them in some cancer cell lines [J. Proteome Res. 8 (2009) 521-537]. We also found that the device is useful to release glycosaminoglycans from proteoglycans [Anal. Biochem. 362 (2007) 245-251]. Based on these studies, we developed a method for one-pot analysis of mucin-type glycans and glycosaminoglycans after releasing them from total protein pool obtained from some cancer cell lines. Mucin-type glycans were analyzed by a combination of high-performance liquid chromatography and mass spectrometry techniques, and glycosaminoglycans were analyzed by capillary electrophoresis as fluorescent-labeled unsaturated disaccharides after digestion with specific eliminases followed by fluorescent labeling. Ten cancer cell lines, including blood cancer cells as well as epithelial cancer cells, were used to assess the method. The results clearly revealed that both mucin-type glycans and glycosaminoglycans showed quite interesting profiles. Thus, the current technique will be a powerful tool for discovery of glycan markers of diseases.  相似文献   
89.

Background

Polyamines are small polycationic molecules found ubiquitously in all organisms and function in a wide variety of biological processes. In the past decade, molecular and genetic studies using mutants and transgenic plants with an altered activity of enzymes involved in polyamine biosynthesis have contributed much to a better understanding of the biological functions of polyamines in plants.

Possible roles

Spermidine is essential for survival of Arabidopsis embryos. One of the reasons may lie in the fact that spermidine serves as a substrate for the lysine → hypusine post-translational modification of the eukaryotic translation initiation factor 5A, which is essential in all eukaryotic cells. Spermine is not essential but plays a role in stress responses, probably through the modulation of cation channel activities, and as a source of hydrogen peroxide during pathogen infection. Thermospermine, an isomer of spermine, is involved in stem elongation, possibly by acting on the regulation of upstream open reading frame-mediated translation.

Conclusions

The mechanisms of action of polyamines differ greatly from those of plant hormones. There remain numerous unanswered questions regarding polyamines in plants, such as transport systems and polyamine-responsive genes. Further studies on the action of polyamines will undoubtedly provide a new understanding of plant growth regulation and stress responses.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号