首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   8篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  1999年   4篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
21.
Length–weight relationships (LWRs) are described for 21 fish species belonging to six families from different tributaries of the upland Ganga Basin in India. LWRs for five selected species were unknown to FishBase and new maximum lengths are recorded for 13 species. These results will be useful for fishery research, management and conservation in these tributaries of the Ganga River basin.  相似文献   
22.
Decision-analytic models provide forecasts of how systems of interest will respond to management. These models can be parameterized using empirical data, but sometimes require information elicited from experts. When evaluating the effects of disease in species translocation programs, expert judgment is likely to play a role because complete empirical information will rarely be available. We illustrate development of a decision-analytic model built to inform decision-making regarding translocations and other management actions for the boreal toad (Anaxyrus boreas boreas), a species with declines linked to chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd). Using the model, we explored the management implications of major uncertainties in this system, including whether there is a genetic basis for resistance to pathogenic infection by Bd, how translocation can best be implemented, and the effectiveness of efforts to reduce the spread of Bd. Our modeling exercise suggested that while selection for resistance to pathogenic infection by Bd could increase numbers of sites occupied by toads, and translocations could increase the rate of toad recovery, efforts to reduce the spread of Bd may have little effect. We emphasize the need to continue developing and parameterizing models necessary to assess management actions for combating chytridiomycosis-associated declines.  相似文献   
23.
Identification of the molecular lesion in Caenorhabditis elegans mutants isolated through forward genetic screens usually involves time-consuming genetic mapping. We used Illumina deep sequencing technology to sequence a complete, mutant C. elegans genome and thus pinpointed a single-nucleotide mutation in the genome that affects a neuronal cell fate decision. This constitutes a proof-of-principle for using whole-genome sequencing to analyze C. elegans mutants.  相似文献   
24.
This research examined how perceptions of outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 in poultry are related to urbanization. Via in-depth interviews with village leaders, household farmers, and large farm operators in modern, transitional, and traditional communes in the north of Vietnam, we explored behaviors, attitudes, cultural values, and traditions that might amplify or attenuate HPAI outbreaks. We also explored conceptualizations of urbanization and its impacts on animal husbandry and disease outbreaks. Qualitative theme analyses identified the key impacts, factors related to HPAI outbreaks, and disease prevention and management strategies. The analyses also highlighted how urbanization improves some aspects of life (e.g., food security, family wealth and health, more employment opportunities, and improved infrastructure), but simultaneously poses significant challenges for poultry farming and disease management. Awareness of qualitative aspects of HPAI risk perceptions and behaviors and how they vary with urbanization processes may help to improve the prevention and management of emerging infectious diseases.  相似文献   
25.
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG, p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg-/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo, EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.  相似文献   
26.
27.
28.
Whole-genome sequencing (WGS) of organisms displaying a specific mutant phenotype is a powerful approach to identify the genetic determinants of a plethora of biological processes. We have previously validated the feasibility of this approach by identifying a point-mutated locus responsible for a specific phenotype, observed in an ethyl methanesulfonate (EMS)-mutagenized Caenorhabditis elegans strain. Here we describe the genome-wide mutational profile of 17 EMS-mutagenized genomes as assessed with a bioinformatic pipeline, called MAQGene. Surprisingly, we find that while outcrossing mutagenized strains does reduce the total number of mutations, a striking mutational load is still observed even in outcrossed strains. Such genetic complexity has to be taken into account when establishing a causative relationship between genotype and phenotype. Even though unintentional, the 17 sequenced strains described here provide a resource of allelic variants in almost 1000 genes, including 62 premature stop codons, which represent candidate knockout alleles that will be of further use for the C. elegans community to study gene function.INDUCING molecular lesions in a genome is an effective approach to interrogate the genome for its functional elements. Molecular lesions can be induced using a variety of methods. Because of their efficiency and their ability to generate alleles with various different alterations in gene activity (e.g., amorphic, antimorphic, hypomorphic, and hypermorphic), chemical mutagens, such as ethyl methanesulfonate (EMS), are frequently used in genetic mutant screens (Anderson 1995). However, due to mutagen efficiency, a mutant animal selected for a single-locus phenotype invariably contains EMS-induced “background mutations” in its genome. Experimenters try to minimize the potential impact of background mutations through outcrossing to animals with a wild-type genome. Yet no full snapshots of genome sequences right after EMS mutagenesis and after outcrossing have so far been provided to illustrate the extent of background mutations and the extent to which they can indeed be eliminated.Another caveat of using base-changing chemical mutagens is the relative difficulty associated with identifying the phenotype-causing molecular lesion. In multicellular genetic model organisms, mutant identification involves time-consuming positional cloning approaches, usually involving breeding with genetically marked strains that allow pinpointing of the location of a molecular lesion. Even with rapid, SNP-based mapping approaches in animals with short generation times, such as Caenorhabditis elegans, substantial time hurdles, particularly in the final, fine-mapping stages, still exist. Conceptually similar problems in defining the location of a molecular lesion are encountered by human geneticists who attempt to identify disease-causing genetic lesions.Whole-genome sequencing (WGS) is beginning to emerge as an efficient and cost-effective tool to shortcut time-consuming mapping and positional cloning efforts (Hobert 2010). The sequencing of an entire genome and its ensuing comparison to a wild-type reference genome can potentially directly pinpoint the molecular lesion that results in the mutant phenotype the animal has been selected for. Proof-of-concept studies in bacteria, yeast, plants, worms, and flies have validated the applicability of this approach (Sarin et al. 2008; Smith et al. 2008; Srivatsan et al. 2008; Blumenstiel et al. 2009; Irvine et al. 2009; Flowers et al. 2010).Present-day deep sequencing platforms used for WGS generate relatively short sequence reads, thereby posing the bioinformatic challenge to align those reads to a reference genome. We previously described a software pipeline, MAQGene, which is based on the standard alignment program MAQ (Li et al. 2008) and facilitates this bioinformatic step by providing the end user with an extensively curated list of sequence variants from a WGS run of a mutated genome compared to a reference genome (Bigelow et al. 2009). This pipeline can be used for well-annotated, assembled genomes, such as C. elegans or Drosophila. In this article, we describe that this pipeline can identify not only point mutations but also deletions. We then use this pipeline to analyze a total of 17 EMS-mutagenized genomes. We find that EMS-mutagenized genomes carry a significant mutational load including presumptive loss-of-function alleles in several protein-coding genes that can lead to synthetic genetic interactions, one of which we describe here in more detail. We show that outcrossing to wild-type animals can lighten the mutational load; however, a substantial number of sequence variants are also introduced during outcrossing. Even though background mutations uncovered by WGS may complicate the interpretation of mutant phenotypes, they do provide a potentially useful source for functional studies of the affected genes.  相似文献   
29.
30.
Sarin S  Ross KE  Boucher L  Green Y  Tyers M  Cohen-Fix O 《Genetics》2004,168(3):1763-1771
Budding yeast securin/Pds1p, an inhibitor of the anaphase activator separase/Esp1p, is involved in several checkpoint pathways and in promoting Esp1p's nuclear localization. Using a modified synthetic genetic array (SGA) screen for genes that become essential in the absence of Pds1p, we uncovered roles for uncharacterized genes in cell cycle processes, including Esp1p activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号