首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7354篇
  免费   388篇
  国内免费   3篇
  2022年   86篇
  2021年   150篇
  2020年   100篇
  2019年   105篇
  2018年   150篇
  2017年   127篇
  2016年   206篇
  2015年   265篇
  2014年   310篇
  2013年   421篇
  2012年   484篇
  2011年   417篇
  2010年   281篇
  2009年   219篇
  2008年   300篇
  2007年   303篇
  2006年   238篇
  2005年   263篇
  2004年   210篇
  2003年   225篇
  2002年   198篇
  2001年   188篇
  2000年   156篇
  1999年   144篇
  1998年   71篇
  1997年   56篇
  1996年   47篇
  1995年   50篇
  1994年   48篇
  1992年   118篇
  1991年   89篇
  1990年   131篇
  1989年   98篇
  1988年   105篇
  1987年   94篇
  1986年   78篇
  1985年   90篇
  1984年   82篇
  1983年   62篇
  1982年   65篇
  1981年   87篇
  1980年   64篇
  1979年   94篇
  1978年   63篇
  1977年   66篇
  1976年   47篇
  1975年   60篇
  1974年   57篇
  1973年   49篇
  1972年   47篇
排序方式: 共有7745条查询结果,搜索用时 15 毫秒
891.
The protein products of several rad checkpoint genes of Schizosaccharomyces pombe (rad1+, rad3+, rad9+, rad17+, rad26+, and hus1+) play crucial roles in sensing changes in DNA structure, and several function in the maintenance of telomeres. When the mammalian homologue of S. pombe Rad9 was inactivated, increases in chromosome end-to-end associations and frequency of telomere loss were observed. This telomere instability correlated with enhanced S- and G2-phase-specific cell killing, delayed kinetics of gamma-H2AX focus appearance and disappearance, and reduced chromosomal repair after ionizing radiation (IR) exposure, suggesting that Rad9 plays a role in cell cycle phase-specific DNA damage repair. Furthermore, mammalian Rad9 interacted with Rad51, and inactivation of mammalian Rad9 also resulted in decreased homologous recombinational (HR) repair, which occurs predominantly in the S and G2 phases of the cell cycle. Together, these findings provide evidence of roles for mammalian Rad9 in telomere stability and HR repair as a mechanism for promoting cell survival after IR exposure.  相似文献   
892.
The continuous advancements in cancer research have contributed to the overwhelming evidence of the presence of telomerase in primary and secondary tumours together with hsp90 and c-Myc. This review will discuss the important role of telomerase together with hsp90 and c-Myc within the initiation and progression of gliomas. Also it will review the differential expression of these genes in the different grades of gliomas and the possibility of new treatments targeting these specific genes.  相似文献   
893.
Quantitative structure-activity relationship (QSAR) has been established on a series of thirty-eight compounds of four different sets of condensed pyridine and pyrimidine analogs, for their hydroxymethyl glutaryl coenzyme (HMG-CoA) reductase inhibitor activity, in order to understand the essential structural requirement for binding with receptor, in terms of common biophoric and secondary sites employing APEX-3D software. Among several 3D pharmacophoric models with different sizes and arrangements, one model was selected based on r2 = 0.8, chance<0.001, match equivalent to 0.38 and all the 38 compounds were considered. The results suggest that hydrophobicity, hydrogen acceptor and optimum steric refractivity play a dominant role in the inhibition of HMG-CoA reductase. The information obtained from the present study can be used to design and predict more potent molecules as HMG-CoA reductase inhibitors, prior to their synthesis.  相似文献   
894.
Bromelain is a basic, 23.8 kDa thiol proteinase obtained from stem of the pineapple plant (Ananas comosus) and is unique in containing a single oligosaccharide chain attached to the polypeptide. This property allowed its affinity binding and favorable orientation on a Sepharose support pre-coupled with the lectin, concanavalin A (Con A). For comparison, bromelain was also immobilized by covalently coupling to the CNBr-activated Sepharose. The preparation obtained was more resistant to thermal inactivation as evident from the retention of over 50% activity after incubation at 60 for 100 min (as compared to 20% retained by the native enzyme and 30% retained by the covalently immobilized enzyme), exhibited a broader pH-activity profile with the enzyme retaining over 60% activity at pH 11 (as compared to over 25% retained by native and the enzyme immobilized covalently). The native, covalently-coupled and affinity-bound bromelains had apparent K m values of 1.1, 2 and 0.54 mg/ml, respectively using casein as the substrate. The V max values remained unaffected on immobilization.  相似文献   
895.
Controlled osmotic swelling and de-swelling measurements have been performed on gelatin, a polyampholyte, hydrogels suspended in water-ethanol marginal solvent at room temperature (20 degrees C) where the alcohol concentration was changed from 0 to 100% (v/v). The change in gel mass was monitored as function of time until osmotic equilibrium was established with the surrounding solvent. It was observed that osmotic pressure of polymer-solvent mixing, pi(m)相似文献   
896.
The activities of antioxidant enzymes viz. glutathione reductase, GR; superoxide dismutase, SOD; peroxidase, POD; catalase, CAT and glutathione-S-transferase, GST and alkaloid accumulation were investigated in leaf pairs (apical, middle, basal) and in roots of Catharanthus roseus seedlings under the conditions of different nitrogen sources (20 mM KNO(3) and 2 mM NH(4)Cl) and salinity, in the absence (non-saline control) and in the presence of 100 mM NaCl in the nutrient solution. Salinity caused a reduction in plant biomass. The biomass production of ammonium-fed plants was lower than that of nitrate-fed plants. The antioxidant enzymes exhibited higher activity in saline-treated plants. Changes in antioxidant enzyme activity caused by different nitrogen sources differed in all leaf pairs, as well as in roots of C. roseus. Ammonium-fed plants showed higher CAT, GR and GST activity in leaf pairs as well as in roots, while POD and SOD activity were higher in nitrate-fed plants. Higher peroxidase activity concomitant with the increased accumulation of alkaloid was found in all leaf pairs, as well as in roots of C. roseus of NO(3)(-) fed plants as compared to NH(4)(+) fed plants.  相似文献   
897.
898.
Normal spermatogenesis is essential for reproduction and depends on proper spermatogonial stem cell (SSC) function. Genes and signaling pathways that regulate SSC function have not been well defined. We report that glial cell-line-derived neurotrophic factor (GDNF) signaling through the RET tyrosine kinase/GFRA1 receptor complex is required for spermatogonial self-renewal in mice. GFRA1 and RET expression was identified in a subset of gonocytes at birth, was restricted to SSCs during normal spermatogenesis, and RET expressing cells were abundant in a cryptorchid model of SSC self-renewal. We used the whole-testis transplantation technique to overcome the limitation of neonatal lethality of Gdnf-, Gfra1-, and Ret-deficient mice and found that each of these genes is required for postnatal spermatogenesis and not for embryological testes development. Each mutant testis shows severe SSC depletion by Postnatal Day 7 during the first wave of spermatogenesis. These defects were due to lack of SSC proliferation and an inability of SSCs to maintain an undifferentiated state. Our results demonstrate that GDNF-mediated RET signaling is critical for the fate of undifferentiated spermatogonia and that abnormalities in this pathway may contribute to male infertility and testicular germ cell tumors.  相似文献   
899.
A bioconjugate of Pseudomonas cepacia lipase with alginate was prepared by simple adsorption. Atomic force microscope (AFM) images showed that this bioconjugate resulted from adsorption rather than entrapment of the enzyme as enzyme molecules were visible on the gel surface. The soluble bioconjugate exhibited increased enzyme activity in terms of high effectiveness factor (effectiveness factor was 3 for the immobilized preparation) and greater Vmax/Km value (Vmax/Km increased 25 times upon immobilization). This constitutes one of the less frequently observed instances of lipase activation by lid opening as a result of binding to a predominantly hydrophilic molecule. The bioconjugate was also more stable at 55 degrees C as compared to the free enzyme and could be reused for oil hydrolysis up to 4 cycles without any loss in activity. Fluorescence emission spectroscopy showed that the immobilized enzyme had undergone definite conformational changes.  相似文献   
900.
Gupta BP  Liu J  Hwang BJ  Moghal N  Sternberg PW 《Genetics》2006,174(3):1315-1326
The LIN-3-LET-23-mediated inductive signaling pathway plays a major role during vulval development in C. elegans. Studies on the components of this pathway have revealed positive as well as negative regulators that function to modulate the strength and specificity of the signal transduction cascade. We have carried out genetic screens to identify new regulators of this pathway by screening for suppressors of lin-3 vulvaless phenotype. The screens recovered three loci including alleles of gap-1 and a new gene represented by sli-3. Our genetic epistasis experiments suggest that sli-3 functions either downstream or in parallel to nuclear factors lin-1 and sur-2. sli-3 synergistically interacts with the previously identified negative regulators of the let-23 signaling pathway and causes excessive cell proliferation. However, in the absence of any other mutation sli-3 mutant animals display wild-type vulval induction and morphology. We propose that sli-3 functions as a negative regulator of vulval induction and defines a branch of the inductive signaling pathway. We provide evidence that sli-3 interacts with the EGF signaling pathway components during vulval induction but not during viability and ovulation processes. Thus, sli-3 helps define specificity of the EGF signaling to induce the vulva.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号