首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   73篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   8篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   16篇
  2015年   25篇
  2014年   30篇
  2013年   39篇
  2012年   44篇
  2011年   39篇
  2010年   40篇
  2009年   27篇
  2008年   45篇
  2007年   24篇
  2006年   42篇
  2005年   26篇
  2004年   27篇
  2003年   31篇
  2002年   23篇
  2001年   20篇
  2000年   17篇
  1999年   15篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1986年   9篇
  1984年   5篇
  1983年   4篇
  1981年   3篇
  1979年   4篇
  1978年   3篇
  1976年   4篇
  1973年   4篇
  1972年   2篇
  1970年   5篇
  1969年   3篇
  1967年   2篇
  1962年   2篇
  1959年   4篇
  1954年   2篇
  1953年   2篇
排序方式: 共有720条查询结果,搜索用时 671 毫秒
641.
Jagannathan L  Swaminathan K  Kumar SM  Kumar GR  Dey A 《Gene》2012,494(1):130-139
Alcohol induced liver injury has been studied extensively. Using literature search and bioinformatics tools, the present study characterizes the genes involved in alcohol induced liver injury. The cellular and metabolic processes in which genes involved in alcohol induced liver injury are implicated are also discussed. The genes related to alcohol induced liver injury are also involved in affecting certain molecular functions and metabolism of drugs, besides being associated with diseases. In conclusion, the changes in regulation of genes implicated in alcohol induced liver injury apart from causing alcohol mediated hepatic dysfunction may affect other vital processes in the body.  相似文献   
642.
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.  相似文献   
643.
International Journal of Peptide Research and Therapeutics - Inhibition of protein–protein interaction is considered as an innovative approach in the drug development field. In the present...  相似文献   
644.
Transgenic mice expressing stabilized beta-catenin in neural progenitors develop enlarged brains resulting from increased progenitor expansion. To more precisely define beta-catenin regulation of progenitor fate, we employed a conditional transgenic approach to delete the beta-catenin regulatory domain from neural progenitors, resulting in expression of stabilized protein from its endogenous promoter in these cells and their progeny. An increased fraction of transgenic cortical cells express the progenitor markers Nestin and LewisX, confirming a relative expansion of this population. Sustained beta-catenin activity expands RC2 and Pax6 expression in the developing cortex while postponing the onset of Tbr2 expression, suggesting a delay in maturation of radial glia into intermediate progenitors. Furthermore, transgenic cortical cells fail to either upregulate ErbB4 or develop a mitogenic response to epidermal growth factor, changes that normally accompany the acquisition of an intermediate fate. Likewise, transgenic brains do not develop a distinct subventricular zone or superficial cortical layers, and overexpression of stabilized beta-catenin by in utero electroporation caused a relative reduction of upper layer vs. lower layer cortical neurons, indicating that persistent beta-catenin activity interferes with the generation of progenitors responsible for the production of upper layer cortical neurons. Collectively, these findings demonstrate that beta-catenin functions to maintain the radial glial population, and suggest that downregulation of beta-catenin signaling may be critical to facilitate the transition to an intermediate progenitor phenotype.  相似文献   
645.
Many surface proteins in Gram-positive bacteria are covalently linked to the cell wall through a transpeptidation reaction catalysed by the enzyme sortase. Corynebacterium diphtheriae encodes six sortases, five of which are devoted to the assembly of three distinct types of pilus fibres--SrtA for the SpaA-type pilus, SrtB/SrtC for the SpaD-type pilus, and SrtD/SrtE for the SpaH-type pilus. We demonstrate here the function of SrtF, the so-called housekeeping sortase, in the cell wall anchoring of pili. We show that a multiple deletion mutant strain expressing only SrtA secretes a large portion of SpaA polymers into the culture medium, with concomitant decrease in the cell wall-linked pili. The same phenotype is observed with the mutant that is missing SrtF alone. By contrast, a strain that expresses only SrtF displays surface-linked pilins but no polymers. Therefore, SrtF can catalyse the cell wall anchoring of pilin monomers as well as pili, but it does not polymerize pilins. We show that SrtA and SrtF together generate wild-type levels of the SpaA-type pilus on the bacterial surface. Furthermore, by regulating the expression of SpaA in the cell, we demonstrate that the SrtF function becomes critical when the SpaA level is sufficiently high. Together, these findings provide key evidence for a two-stage model of pilus assembly: pilins are first polymerized by a pilus-specific sortase, and the resulting fibre is then attached to the cell wall by either the cognate sortase or the housekeeping sortase.  相似文献   
646.
647.
648.
Purpose: The intent of this work was to assess the impact of lyophilization on the encapsulation of salmon calcitonin (sCT) into liposomes.

Methods: Four different liposomal formulations were investigated, i.e. DPPC:Chol:DSPE-PEG2000 (75:20:5 and 65:30:5) and DPPC:Chol (80:20 and 66.7:33.3). Lipid films were prepared and hydrated with loading buffer containing sCT and different concentrations of the cryoprotectant, trehalose dihydrate. The liposomes were lyophilized, reconstituted and extruded to obtain small unilamellar vesicles. Non-encapsulated sCT was separated by gel filtration. Non-lyophilized formulations and liposomes lyophilized without the cryoprotectant were used as controls. Liposomes were analyzed for particle size, polydispersity index, zeta-potential and encapsulation efficiency. 31P-NMR (phosphorous nuclear magnetic resonance spectroscopy) was performed on selected formulations.

Results: Post-lyophilization, no significant change in particle sizes and zeta-potentials were noted, regardless of the presence or absence of the cryoprotectant. Encapsulation efficiencies, however, increased following lyophilization, in both PEGylated (lyophilization control batch) and non-PEGylated liposomes (cryoprotectant batches only). 31P-NMR revealed the presence of two distinct vesicle populations – liposomes and micelles – in PEGylated formulation. The presence of micelles might be responsible for the observed encapsulation enhancement of sCT in the PEGylated formulation.

Conclusions: Lyophilization resulted in an increase in encapsulation efficiency of sCT in PEGylated liposomes, even in the absence of a cryoprotectant, due to presence of micellar vesicles.  相似文献   

649.
650.
Mechanosensitive channel proteins are important safety valves against osmotic shock in bacteria, and are involved in sensing touch and sound waves in higher organisms. The mechanosensitive channel of small conductance (MscS) has been extensively studied. Pulsed electron-electron double resonance (PELDOR or DEER) of detergent-solubilized protein confirms that as seen in the crystal structure, the outer ring of transmembrane helices do not pack against the pore-forming helices, creating an apparent void. The relevance of this void to the functional form of MscS in the bilayer is the subject of debate. Here, we report PELDOR measurements of MscS reconstituted into two lipid bilayer systems: nanodiscs and bicelles. The distance measurements from multiple mutants derived from the PELDOR data are consistent with the detergent-solution arrangement of the protein. We conclude, therefore, that the relative positioning of the transmembrane helices is preserved in mimics of the cell bilayer, and that the apparent voids are not an artifact of detergent solution but a property of the protein that will have to be accounted for in any molecular mechanism of gating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号