首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   14篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   4篇
  2015年   10篇
  2014年   10篇
  2013年   17篇
  2012年   16篇
  2011年   19篇
  2010年   15篇
  2009年   6篇
  2008年   15篇
  2007年   2篇
  2006年   11篇
  2005年   7篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1979年   1篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
121.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) pandemic has exhausted the health systems in many countries with thousands cases diagnosed daily. The currently used treatment guideline is to manage the common symptoms like fever and cough, but doesn’t target the virus itself or halts serious complications arising from this viral infection. Currently, SARS-CoV-2 exhibits many genetic modulations which have been associated with the appearance of highly contagious strains. The number of critical cases of COVID-19 increases markedly, and many of the infected people die as a result of respiratory failure and multiple organ dysfunction. The regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied and confirmed. The impressive immunomodulation and anti-inflammatory activity of MSCs have been recognized as a golden opportunity for the treatment of COVID-19 and its associated complications. Moreover, MSCs regenerative and repairing abilities have been corroborated by many studies with positive outcomes and high recovery rates. Based on that, MSCs infusion could be an effective mechanism in managing and stemming the serious complications and multiple organ failure associated with COVID-19. In the present review, we discuss the commonly reported complications of COVID-19 viral infection and the established and anticipated role of MSCs in managing these complications.  相似文献   
122.
123.
124.
An isolate exhibiting high extracellular lipolytic activity was identified as Pseudomonas gessardii by 16S rDNA gene sequence analysis. The slaughterhouse waste, goat tallow, was used as a lipid substrate for the production of acidic lipase by P. gessardii. The maximum lipase activity of 156 U/ml was observed at an acidic pH of 3.5 and at 0.31 g substrate concentration. The purification steps resulted in the isolation of acidic lipase with a specific activity of 1,473 U/mg and a molecular weight of 94 kDa. One interesting feature of this purified lipase is its stability at highly acidic pH ranging from 2.0 to 5.5 with a high molecular weight. The amino acid composition was determined using HPLC. This acidic lipase has potential applications in the medicinal field as a substitute for pancreatic lipases for enzyme therapy, oleochemical and in biotechnological industries.  相似文献   
125.
126.
127.
p-Anisaldehyde (4-methoxybenzaldehyde), an extract from Pimpinella anisum seeds, is a very common digestive herb of north India. Antifungal activity of p-anisaldehyde was investigated on 10 fluconazole-resistant and 5 fluconazole-sensitive Candida strains. Minimum inhibitory concentrations (MIC(90)) ranged from 250 μg/ml to 600 μg/ml for both sensitive and resistant strains. Ergosterol content was drastically reduced by p-anisaldehyde-62% in sensitive and 66% in resistant strains-but did not corelate well with MIC(90) values. It appears that p-anisaldehyde exerts its antifungal effect by decreasing NADPH routed through up-regulation of putative aryl-alcohol dehydrogenases. Cellular toxicity of p-anisaldehyde against H9c2 rat cardiac myoblasts was less than 20% at the highest MIC value. These findings encourage further development of p-anisaldehyde.  相似文献   
128.

Background

Dengue infection ranks as one of the most significant viral diseases of the globe. Currently, there is no specific vaccine or antiviral therapy for prevention or treatment. Monocytes/macrophages are the principal target cells for dengue virus and are responsible for disseminating the virus after its transmission. Dengue virus enters target cells via receptor-mediated endocytosis after the viral envelope protein E attaches to the cell surface receptor. This study aimed to investigate the effect of silencing the CD-14 associated molecule and clathrin-mediated endocytosis using siRNA on dengue virus entry into monocytes.

Methodology/Principal Findings

Gene expression analysis showed a significant down-regulation of the target genes (82.7%, 84.9 and 76.3% for CD-14 associated molecule, CLTC and DNM2 respectively) in transfected monocytes. The effect of silencing of target genes on dengue virus entry into monocytes was investigated by infecting silenced and non-silenced monocytes with DENV-2. Results showed a significant reduction of infected cells (85.2%), intracellular viral RNA load (73.0%), and extracellular viral RNA load (63.0%) in silenced monocytes as compared to non-silenced monocytes.

Conclusions/Significance

Silencing the cell surface receptor and clathrin mediated endocytosis using RNA interference resulted in inhibition of the dengue virus entry and subsequently multiplication of the virus in the monocytes. This might serve as a novel promising therapeutic target to attenuate dengue infection and thus reduce transmission as well as progression to severe dengue hemorrhagic fever.  相似文献   
129.

Background

Streptococcus pneumoniae is a major causative agent of severe infections, including sepsis, pneumonia, meningitis, and otitis media, that has since become a major public health concern. In this study, the serotypes distribution of pneumococcal isolates was investigated to predict the efficacy of the 7-valent pneumococcal conjugate vaccine (PCV7) among the Malaysian populations.

Methodology/Principal Findings

A total of 151 clinical isolates were serotyped using multiplex PCR assays. Out of them, there were 21.2% penicillin-resistant, 29.1% penicillin-intermediate, and 49.7% penicillin-susceptible S.pneumoniae strains. Serotypes detected among the Malaysian isolates were 1, 3, 10A, 11A/11D, 12F/12A, 14, 15A, 15B/15C, 16F, 18C/18B/18A/18F, 19A, 19F, 23F, 35B, 35F/47F, 6A/6B, 7C/7B/40, 7F/7A, 9V/9A, and 34. Serotype 19F and 23F were the two most prevalent serotypes detected. Serotypes are highly associated with invasiveness of isolates (p = 0.001) and penicillin susceptibility (p<0.001). Serotype 19F was observed to have increased resistance against penicillin while serotype 19A has high invasive tendency. Age of patients was an important factor underlying the pneumococcal serotypes (p = 0.03) and clinical sites of infections (p<0.001). High prevalence of pneumococcal isolates were detected among children <5 years old at nasopharyngeal sites while elderly adults ≥60 years old were at increased risk for pneumococcal bacteremia.

Conclusion/Significance

Current study revealed that a number of serotypes, especially those associated with high penicillin resistance, have been formulated in the PCV7. Therefore, the protections expected from the routine use of PCV7 would be encouraging for the Malaysian. However, it is not possible to predict serotypes that might become predominant in the future and hence continued surveillance of circulating serotypes will be needed.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号