首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2199篇
  免费   130篇
  国内免费   5篇
  2334篇
  2023年   29篇
  2022年   54篇
  2021年   85篇
  2020年   56篇
  2019年   50篇
  2018年   73篇
  2017年   70篇
  2016年   80篇
  2015年   108篇
  2014年   134篇
  2013年   148篇
  2012年   182篇
  2011年   166篇
  2010年   101篇
  2009年   76篇
  2008年   106篇
  2007年   102篇
  2006年   91篇
  2005年   68篇
  2004年   88篇
  2003年   60篇
  2002年   44篇
  2001年   27篇
  2000年   46篇
  1999年   30篇
  1998年   21篇
  1997年   12篇
  1996年   12篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1992年   23篇
  1991年   18篇
  1990年   15篇
  1989年   16篇
  1988年   19篇
  1987年   4篇
  1986年   19篇
  1985年   16篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1972年   4篇
  1970年   3篇
  1969年   4篇
排序方式: 共有2334条查询结果,搜索用时 15 毫秒
121.
Converging lines of evidence point to the involvement of neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) containing the neuropeptide Urocortin-1 (Ucn1) in excessive ethanol (EtOH) intake and EtOH sensitivity. Here, we expanded these previous findings by using a continuous-access, two-bottle choice drinking paradigm (3%, 6%, and 10% EtOH vs. tap water) to compare EtOH intake and EtOH preference in Ucn1 genetic knockout (KO) and wild-type (WT) mice. Based on previous studies demonstrating that electrolytic lesion of the EWcp attenuated EtOH intake and preference in high-drinking C57BL/6J mice, we also set out to determine whether EWcp lesion would differentially alter EtOH consumption in Ucn1 KO and WT mice. Finally, we implemented well-established place conditioning procedures in KO and WT mice to determine whether Ucn1 and the corticotropin-releasing factor type-2 receptor (CRF-R2) were involved in the rewarding and aversive effects of EtOH (2 g/kg, i.p.). Results from these studies revealed that (1) genetic deletion of Ucn1 dampened EtOH preference only in mice with an intact EWcp, but not in mice that received lesion of the EWcp, (2) lesion of the EWcp dampened EtOH intake in Ucn1 KO and WT mice, but dampened EtOH preference only in WT mice expressing Ucn1, and (3) genetic deletion of Ucn1 or CRF-R2 abolished the conditioned rewarding effects of EtOH, but deletion of Ucn1 had no effect on the conditioned aversive effects of EtOH. The current findings provide strong support for the hypothesis that EWcp-Ucn1 neurons play an important role in EtOH intake, preference, and reward.  相似文献   
122.
A novel group of 1,4-diaryl-substituted triazoles was designed and synthesized by introducing the cyclooxygenase-2 (COX-2) pharmacophore SO2NH2 attached to one aryl ring and various substituents (H, F, Cl, CH3 or OCH3) attached to the other aryl ring. The effects of size and flexibility of the compounds upon COX-1/COX-2 inhibitory potency and selectivity was studied by increasing the size of an alkyl linker chain [(–CH2)n, where n = 0, 1, 2]. In vitro COX-1/COX-2 inhibition studies showed that all compounds (1418, 2125 and 2832) are more potent inhibitors of COX-2 isozyme (IC50 = 0.17–28.0 μM range) compared to COX-1 isozyme (IC50 = 21.0 to >100 μM range). Within the group of 1,4 diaryl-substituted triazoles, 4-{2-[4-(4-chloro-phenyl)-[1,2,3]triazol-1-yl]-ethyl}-benzenesulfonamide (compound 30) displayed highest COX-2 inhibitory potency and selectivity (COX-1: IC50 = >100 μM, COX-2: IC50 = 0.17 μM, SI >588). Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure–activity relationship data. Results of molecular docking studies revealed that COX-2 pharmacophore SO2NH2 in compound 30 is positioned in the secondary pocket of COX-2 active site; with the nitrogen atom of the SO2NH2 group being hydrogen bonded to Q192 (N?OC = 2.85 Å), and one of the oxygen atoms of SO2NH2 group forming a hydrogen bond to H90 (SO?N = 2.38 Å).  相似文献   
123.
The glyoxalase system constitutes the major pathway for the detoxification of metabolically produced cytotoxin methylglyoxal (MG) into a non‐toxic metabolite d ‐lactate. Glyoxalase I (GLY I) is an evolutionarily conserved metalloenzyme requiring divalent metal ions for its activity: Zn2+ in the case of eukaryotes or Ni2+ for enzymes of prokaryotic origin. Plant GLY I proteins are part of a multimember family; however, not much is known about their physiological function, structure and metal dependency. In this study, we report a unique GLY I (OsGLYI‐11.2) from Oryza sativa (rice) that requires Ni2+ for its activity. Its biochemical, structural and functional characterization revealed it to be a monomeric enzyme, possessing a single Ni2+ coordination site despite containing two GLY I domains. The requirement of Ni2+ as a cofactor by an enzyme involved in cellular detoxification suggests an essential role for this otherwise toxic heavy metal in the stress response. Intriguingly, the expression of OsGLYI‐11.2 was found to be highly substrate inducible, suggesting an important mode of regulation for its cellular levels. Heterologous expression of OsGLYI‐11.2 in Escherichia coli and model plant Nicotiana tabacum (tobacco) resulted in improved adaptation to various abiotic stresses caused by increased scavenging of MG, lower Na+/K+ ratio and maintenance of reduced glutathione levels. Together, our results suggest interesting links between MG cellular levels, its detoxification by GLY I, and Ni2+ – the heavy metal cofactor of OsGLYI‐11.2, in relation to stress response and adaptation in plants.  相似文献   
124.
BackgroundArtemisinin-based combination therapies are recommended by the World Health Organisation (WHO) as first-line treatment for Plasmodium falciparum malaria, yet medication must be of good quality for efficacious treatment. A recent meta-analysis reported 35% (796/2,296) of antimalarial drug samples from 21 Sub-Saharan African countries, purchased from outlets predominantly using convenience sampling, failed chemical content analysis. We used three sampling strategies to purchase artemisinin-containing antimalarials (ACAs) in Enugu metropolis, Nigeria, and compared the resulting quality estimates.MethodsACAs were purchased using three sampling approaches - convenience, mystery clients and overt, within a defined area and sampling frame in Enugu metropolis. The active pharmaceutical ingredients were assessed using high-performance liquid chromatography and confirmed by mass spectrometry at three independent laboratories. Results were expressed as percentage of APIs stated on the packaging and used to categorise each sample as acceptable quality, substandard, degraded, or falsified.ResultsContent analysis of 3024 samples purchased from 421 outlets using convenience (n=200), mystery (n=1,919) and overt (n=905) approaches, showed overall 90.8% ACAs to be of acceptable quality, 6.8% substandard, 1.3% degraded and 1.2% falsified. Convenience sampling yielded a significantly higher prevalence of poor quality ACAs, but was not evident by the mystery and overt sampling strategies both of which yielded results that were comparable between each other. Artesunate (n=135; 4 falsified) and dihydroartemisinin (n=14) monotherapy tablets, not recommended by WHO, were also identified.ConclusionRandomised sampling identified fewer falsified ACAs than previously reported by convenience approaches. Our findings emphasise the need for specific consideration to be given to sampling frame and sampling approach if representative information on drug quality is to be obtained.  相似文献   
125.
Vascular endothelial growth factor (VEGF) is an angiogenic mitogen involved in promoting tumor angiogenesis inside the body. VEGF is a key protein required for progression of tumor from benign to malignant phenotype. In this study, we investigated the binding affinity of a previously selected 26-mer DNA aptamer sequence (SL2-B) against heparin binding domain (HBD) of VEGF165 protein. The SL2-B was first chemically modified by introduction of phosphorothioate linkages (PS-linkages). Subsequently, surface plasmon resonance (SPR) spectroscopy and circular dichroism (CD) were used to determine the binding affinity, specificity and to deduce the conformation of PS-modified SL2-B sequence. Finally, antiproliferative activity of the modified SL2-B sequence on Hep G2 cancer cells was investigated. Our results demonstrate a marked enhancement in the biostability of the SL2-B sequence after PS modification. The modified SL2-B sequence also exhibits enhanced antiproliferative activity against Hep G2 cancer cells in hypoxia conditions. In addition, modified SL2-B sequence inhibits the expression of Jagged-1 protein, which is one of the ligands to VEGF linked delta/jagged-notch signaling pathway.  相似文献   
126.
We report the synthesis, in vitro antiprotozoal (against Plasmodium and Leishmania), antimicrobial, cytotoxicity (Vero and MetHb-producing properties), and in vivo antimalarial activities of two series of 8-quinolinamines. N1-{4-[2-(tert-Butyl)-6-methoxy-8-quinolylamino]pentyl}-(2S/2R)-2-aminosubstitutedamides (21-33) and N1-[4-(4-ethyl-6-methoxy-5-pentyloxy-8-quinolylamino)pentyl]-(2S/2R)-2-aminosubstitutedamides (51-63) were synthesized in six steps from 6-methoxy-8-nitroquinoline and 4-methoxy-2-nitro-5-pentyloxyaniline, respectively. Several analogs displayed promising antimalarial activity in vitro against Plasmodium falciparum D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) clones with high selectivity indices versus mammalian cells. The most promising analogs (21-24) also displayed potent antimalarial activity in vivo in a Plasmodium berghei-infected mouse model. Most interestingly, many analogs exhibited promising in vitro antileishmanial activity against Leishmania donovani promastigotes, and antimicrobial activities against a panel of pathogenic bacteria and fungi. Several analogs, notably 21-24, 26-32, and 60, showed less MetHb formation compared to primaquine indicating the potential of these compounds in 8-quinolinamine-based antimalarial drug development.  相似文献   
127.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   
128.
In the present study, an ayurvedic medicinal plant, Anthocephalus cadamba (Roxb .) Miq . commonly known as ‘Kadamb’ was explored for its potential against oxidative stress and cancer. The fractions namely AC‐4 and ACALK (alkaloid rich fraction) were isolated from A. cadamba leaves by employing two different isolation methods and evaluated for their in vitro antioxidant and antiproliferative activity. The structure of the isolated AC‐4 was characterized tentatively as dihydrocadambine by using various spectroscopic techniques such as ESI‐QTOF‐MS, 1H‐ and 13C‐NMR, DEPT, COSY, HMQC, and HMBC. Results of various antioxidant assays viz. 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), ABTS cation radical, superoxide anion radical scavenging, and plasmid nicking assay demonstrated that both the fractions viz. AC‐4 and ACALK possess ability to scavenge DPPH, ABTS radicals and effectively protected plasmid pBR322 DNA from damage caused by hydroxyl radicals. Further, when both fractions were evaluated for their potential to suppress growth of HeLa and COLO 205 cells, only ACALK fraction showed antiproliferative effects. ACALK exhibited GI50 of 205.98 and 99.54 μg/ml in HeLa and COLO 205 cell lines, respectively. Results of Hoechst staining in cervical carcinoma (HeLa) cells confirmed that ACALK induced cell death in HeLa cells via apoptotic mode. Both the fractions also inhibited COX‐2 enzyme activity.  相似文献   
129.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNA(Lys) region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.  相似文献   
130.
Length variation in the human mtDNA intergenic region between the cytochrome oxidase II (COII) and tRNA lysine (tRNAlys) genes has been widely studied in world populations. Specifically, Austronesian populations of the Pacific and Austro-Asiatic populations of southeast Asia most frequently carry the 9-bp deletion in that region implying their shared common ancestry in haplogroup B. Furthermore, multiple independent origins of the 9-bp deletion at the background of other mtDNA haplogroups has been shown in populations of Africa, Europe, Australia, and India. We have analyzed 3293 Indian individuals belonging to 58 populations, representing different caste, tribal, and religious groups, for the length variation in the 9-bp motif. The 9-bp deletion (one copy) and insertion (three copies) alleles were observed in 2.51% (2.15% deletion and 0.36% insertion) of the individuals. The maximum frequency of the deletion (45.8%) was observed in the Nicobarese in association with the haplogroup B5a D-loop motif that is common throughout southeast Asia. The low polymorphism in the D-loop sequence of the Nicobarese B5a samples suggests their recent origin and a founder effect, probably involving migration from southeast Asia. Interestingly, none of the 302 (except one Munda sample, which has 9-bp insertion) from Mundari-speaking Austro-Asiatic populations from the Indian mainland showed the length polymorphism of the 9-bp motif, pointing either to their independent origin from the Mon-Khmeric-speaking Nicobarese or to an extensive admixture with neighboring Indo-European-speaking populations. Consistent with previous reports, the Indo-European and Dravidic populations of India showed low frequency of the 9-bp deletion/insertion. More than 18 independent origins of the deletion or insertion mutation could be inferred in the phylogenetic analysis of the D-loop sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号