首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1067篇
  免费   85篇
  2022年   15篇
  2021年   26篇
  2020年   8篇
  2019年   10篇
  2018年   22篇
  2017年   4篇
  2016年   20篇
  2015年   44篇
  2014年   35篇
  2013年   68篇
  2012年   54篇
  2011年   72篇
  2010年   36篇
  2009年   38篇
  2008年   54篇
  2007年   50篇
  2006年   40篇
  2005年   45篇
  2004年   45篇
  2003年   54篇
  2002年   32篇
  2001年   29篇
  2000年   34篇
  1999年   30篇
  1998年   11篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   29篇
  1991年   11篇
  1990年   24篇
  1989年   17篇
  1988年   15篇
  1987年   17篇
  1986年   15篇
  1985年   12篇
  1984年   11篇
  1983年   6篇
  1982年   7篇
  1981年   5篇
  1980年   11篇
  1979年   6篇
  1978年   9篇
  1977年   5篇
  1976年   9篇
  1974年   4篇
  1973年   8篇
  1972年   3篇
排序方式: 共有1152条查询结果,搜索用时 15 毫秒
51.
52.
The tomato Cf‐9 gene encodes a membrane‐anchored glycoprotein that imparts race‐specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N‐terminal half of the extracellular leucine‐rich repeat (eLRR) domain of the Cf‐9 protein determines its specificity for Avr9, the C‐terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf‐9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9‐dependent necrosis triggered by Cf‐9. Our results indicate that the membrane‐proximal region of the cytosolic domain of Cf‐9 plays an important role in Cf‐9‐mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf‐9 function. An alanine mutation of T835 had no effect on Cf‐9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf‐9 function. We therefore postulate that phosphorylation/de‐phosphorylation of T835 could act as a molecular switch to determine whether Cf‐9 is in a primed or inactive state. Yeast two‐hybrid analysis was used to show that the cytosolic domain of Cf‐9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline‐induced kink in the membrane‐proximal region of the cytosolic domain of Cf‐9 may be important for interaction with VAP27, which may, in turn, be important for Cf‐9 function.  相似文献   
53.
Dasgupta B  Chakrabarti P  Basu G 《FEBS letters》2007,581(23):4529-4532
Identification of sequence motifs that favor cis peptide bonds in proteins is important for understanding and designing proteins containing turns mediated by cis peptide conformations. From (1)H NMR solution studies on short peptides, we show that the Pro-Pro peptide bond in Pro-Pro-Phe almost equally populates the cis and trans isomers, with the cis isomer stabilized by a CHc...pi interaction involving the terminal Pro and Phe. We also show that Phe is over-represented at sequence positions immediately following cis Pro-Pro motifs in known protein structures. Our results demonstrate that the Pro-Pro cis conformer in Pro-Pro-Phe sequence motifs is as important as the trans conformer, both in short peptides as well as in natively folded proteins.  相似文献   
54.
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate --> 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes.  相似文献   
55.
An important step in many pathological conditions, particularly tissue and organ fibrosis, is the conversion of relatively quiescent cells into active myofibroblasts. These are highly specialized cells that participate in normal wound healing but also contribute to pathogenesis. These cells possess characteristics of smooth muscle cells and fibroblasts, have enhanced synthetic activity secreting abundant extracellular matrix components, cytokines, and growth factors, and are capable of generating contractile force. As such, these cells have become potential therapeutic targets in a number of disease settings. Transforming growth factor β (TGF-β) is a potent stimulus of fibrosis and myofibroblast formation and likewise is an important therapeutic target in several disease conditions. The plant-derived isothiocyanate sulforaphane has been shown to have protective effects in several pathological models including diabetic cardiomyopathy, carcinogenesis, and fibrosis. These studies suggest that sulforaphane may be an attractive preventive agent against disease progression, particularly in conditions involving alterations of the extracellular matrix and activation of myofibroblasts. However, few studies have evaluated the effects of sulforaphane on cardiac fibroblast activation and their interactions with the extracellular matrix. The present studies were carried out to determine the potential effects of sulforaphane on the conversion of quiescent cardiac fibroblasts to an activated myofibroblast phenotype and associated alterations in signaling, expression of extracellular matrix receptors, and cellular physiology following stimulation with TGF-β1. These studies demonstrate that sulforaphane attenuates TGF-β1-induced myofibroblast formation and contractile activity. Sulforaphane also reduces expression of collagen-binding integrins and inhibits canonical and noncanonical TGF-β signaling pathways.  相似文献   
56.
Mycopathologia - Aspergillus terreus may colonize the airways of patients with cystic fibrosis (CF). Whether this merits antifungal treatment is still unclear due to heterogeneous reports regarding...  相似文献   
57.
The antitumor antibiotics chromomycin A(3) (CHR) and mithramycin (MTR) are known to inhibit macromolecular biosynthesis by reversibly binding to double stranded DNA with a GC base specificity via the minor groove in the presence of a divalent cation such as Mg(2+). Earlier reports from our laboratory showed that the antibiotics form two types of complexes with Mg(2+): complex I with 1:1 stoichiometry and complex II with 2:1 stoichiometry in terms of the antibiotic and Mg(2+). The binding potential of an octanucleotide, d(TATGCATA)(2), which contains one potential site of association with the above complexes of the two antibiotics, was examined using spectroscopic techniques such as absorption, fluorescence, and circular dichroism. We also evaluated thermodynamic parameters for the interaction. In spite of the presence of two structural moieties of the antibiotic in complex II, a major characteristic feature was the association of a single ligand molecule per molecule of octameric duplex in all cases. This indicated that the modes of association for the two types of complexes with the oligomeric DNA were different. The association was dependent on the nature of the antibiotics. Spectroscopic characterization along with analysis of binding and thermodynamic parameters showed that differences in the mode of recognition by complexes I and II of the antibiotics with polymeric DNA existed at the oligomeric level. Analysis of the thermodynamic parameters led us to propose a partial accommodation of the ligand in the groove without the displacement of bound water molecules and supported earlier results on the DNA structural transition from B --> A type geometry as an obligatory requirement for the accommodation of the bulkier complex II of the two drugs. The role of the carbohydrate moieties of the antibiotics in the DNA recognition process was indicated when we compared the DNA binding properties with the same type of Mg(2+) complex for the two antibiotics.  相似文献   
58.
RAPD based fingerprinting of 21 serovars of Bacillus thuringiensis (Bt) representing different serotypes was performed using 19 random decamer primers. A total of 172 polymorphic fragments, ranging in size from 161-2789 bp, were amplified from 13 of the 19 primers. Pairwise genetic similarity analysis revealed very low similarity values, ranging from 3-68%, among the serovars of Bt, indicating high genetic divergence. Nineteen serovars of Bt fell in two major clusters and remaining two formed solitary clusters in the dendogram. Clustering of Bt strains established genetic relatedness between serovars and serotypes. It has been suggested that RAPD analysis can be used for genotypic characterization of Bt to complement flagellar serotyping.  相似文献   
59.
Escherichia coli thioredoxin is a 108 amino acid oxidoreductase and contains a single Met residue at position 37. The protein contains a long alpha-helical stretch between residues 32 and 49. The central residue of this helix, Pro40, has been replaced by Ser. The stabilities of the oxidized states of two proteins, the single mutant M37L and the double mutant M37L,P40S, have been characterized by differential scanning calorimetry (DSC) and also by a series of isothermal guanidine hydrochloride (GuHCl) melts in the temperature range of 277 to 333 K. The P40S mutation was found to stabilize the protein at all temperatures upto 340 K though both proteins had similar Tm values of about 356 K. At 298 K, the M37L,P40S mutant was found to be more stable than M37L by 1.5 kcal/mol. A combined analysis of GuHCl and calorimetric data was carried out to determine the enthalpy, entropy, and heat capacity change upon unfolding. At 298 K there was a large, stabilizing enthalpic effect in P40S though significant enthalpy-entropy compensation was observed and the two proteins had similar values of deltaCp. Thus, replacement of a Pro in the interior of an alpha helix can have substantial effects on protein stability.  相似文献   
60.
Phosphoimidazolide activated ribomononucleotides (*pN, see structure) are useful substrates for the non-enzymatic synthesis of oligonucleotides. In the presence of metal ions, aqueous solutions of *pN yield primarily the two internucleotide-linked (pN2'pN and pN3'pN) and the pyrophosphate-linked (N5'ppN) dimers. Small amounts of cyclic dimers and higher oligomers are also produced. In this study the relative reactivity of 2-OH vs. 3-OH was determined from the ratio of the yields of pN2'pN vs. pN3'pN. Experiments were performed at 23 °C in the range 7.2 pH 8.4 with substrates that differ in nucleobase (guanosine (G), cytidine (C), uridine (U), and adenosine (A)) and leaving group (imidazole (Im), 2-methylimidazole (2-MeIm) and 2,4-dimethylimidazole (2,4-diMeIm)). Two metal ions (Mg2+ or Mn2+) were employed as catalysts. The conditions used here, i.e. a substrate concentration in the range 0.1 M to 1.0 M and metal ion concentration in the range 0.05 M to 0.2 M, favor base-stacking interactions. The ratio pN2'pN: pN3'pN = 2-5: 3-5 was found independent of nucleobase and typically varied between 2 to 3 indicating that the 2-OH is about 2 to 3 times more reactive than the 3-OH. *pN with Im, compared to 2-MeIm and 2,4-diMeIm leaving group, produce lower yields of internucleotide linked dimers, and a higher pN2'pN: pN3'pN ratio. Trends in the data, observed with all three leaving groups, suggest an increase in pN2'pN: pN3'pN ratio with decreasing substrate concentration (up to 5.47 with 0.051 M ImpG). The observations are in accord with earlier studies reporting a relative reactivity 2'-5': 3'-5'= 6 to 9 obtained with Im as the leaving group, in dilute nucleotide solutions and under conditions that disfavor stacking. It is speculated that the concentration induced change in the relative reactivity is the result of self-association via base-stacking that enhances selectively the proximity of the 3-OH of one molecule to the reactive P-N bond of an other molecule. The implication of these conclusions for oligomerization/ligation reactions is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号