首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   898篇
  免费   24篇
  2023年   9篇
  2022年   19篇
  2021年   25篇
  2020年   21篇
  2019年   17篇
  2018年   23篇
  2017年   17篇
  2016年   35篇
  2015年   62篇
  2014年   48篇
  2013年   92篇
  2012年   79篇
  2011年   96篇
  2010年   60篇
  2009年   34篇
  2008年   37篇
  2007年   38篇
  2006年   32篇
  2005年   36篇
  2004年   27篇
  2003年   29篇
  2002年   24篇
  2001年   5篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1964年   1篇
  1963年   1篇
  1959年   1篇
  1958年   1篇
排序方式: 共有922条查询结果,搜索用时 37 毫秒
61.
62.
63.
Abrin-a is the most toxic fraction of lectins isolated from Abrus precatorius seeds and belongs to the family of type 2 ribosome inactivating proteins (RIP). This toxin may act as a defense molecule in plants against viruses, fungi and insects, where attachment of abrin-a to the exposed glycans on the surface of target cells is the crucial and initial step of its cytotoxicity. Although it has been studied for over four decades, the recognition factors involved in abrin-a-carbohydrate interaction remains to be clarified. In this study, roles of mammalian glyco-structural units, ligand clusters and polyvalency in abrin-a recognition were comprehensively analyzed by enzyme-linked lectinosorbent binding and inhibition assays. The results indicate that: (i) this toxin prefers oligosaccharides having α-anomer of galactose (Gal) at the non-reducing terminal than the corresponding β-anomer; (ii) Galα1-3Galα1- (Bα), Galα1-4Gal (E), Galβ1-3GalNAc (T) and Galβ1-3/4GlcNAc (I/II) related oligosaccharides were the active glyco-structural units; (iii) tri-antennary IIβ, prepared from N-glycan of asialo fetuin, played a dominant role in recognition; (iv) many high-density polyvalent Iβ/IIβ and Eβ glycotopes enhanced the reactivity; (v) the carbohydrate recognition domain of abrin-a is proposed to be a combination of a small cavity type of Gal as major site and a groove type of additional one to tetrasaccharides as subsites with a preference of α1-3/4/6Gal, β1-3GalNAc, β1-3/4/6GlcNAc, β1-4/6Glc, β1-3DAra and β1-4Man as subterminal sugars; (vi) size of the carbohydrate recognition domain may be as large enough to accommodate a linear pentasaccharide and complementary to Galα1-3Galβ1-4GlcNAc β1-3Galβ1-4Glc (gailipenta) sequence. A comparison of the recognition factors and combining sites of abrin-a with ricin, another highly toxic lectin, was also performed to further understand the differences in recognition factors between these two type 2 RIPs.  相似文献   
64.
Mn superoxide dismutase (MnSOD) is an important mitochondrial antioxidant enzyme, and elevated MnSOD levels have been shown to reduce tumor growth in part by suppressing cell proliferation. Studies with fibroblasts have shown that increased MnSOD expression prolongs cell cycle transition time in G1/S and favors entrance into the quiescent state. To determine if the same effect occurs during tissue regeneration in vivo, we used a transgenic mouse system with liver-specific MnSOD expression and a partial hepatectomy paradigm to induce synchronized in vivo cell proliferation during liver regeneration. We show in this experimental system that a 2.6-fold increase in MnSOD activity leads to delayed entry into S phase, as measured by reduction in bromodeoxyuridine (BrdU) incorporation and decreased expression of proliferative cell nuclear antigen (PCNA). Thus, compared to control mice with baseline MnSOD levels, transgenic mice with increased MnSOD expression in the liver have 23% fewer BrdU-positive cells and a marked attenuation of PCNA expression. The increase in MnSOD activity also leads to an increase in the mitochondrial form of thioredoxin (thioredoxin 2), but not in several other peroxidases examined, suggesting the importance of thioredoxin 2 in maintaining redox balance in mitochondria with elevated levels of MnSOD.  相似文献   
65.
The C-terminal, 19-kDa domain of Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) is among the leading vaccine candidate for malaria due to its essential role in erythrocyte invasion by the parasite. We designed a synthetic gene for optimal expression of recombinant PfMSP-119 in Escherichia coli and developed a scalable process to obtain high-quality PfMSP-119. The synthetic gene construct yielded a fourfold higher expression level of PfMSP-119 in comparison to the native gene construct. Optimization of cultivation conditions in the bioreactor indicated important role of yeast extract and substrate feeding strategy for obtaining enhanced expression of soluble and correctly folded PfMSP-119. It was observed that the higher expression level of PfMSP-119 was essentially associated with the generation of higher level of incorrectly folded PfMSP-119. A simple purification procedure comprising metal affinity and ion exchange chromatography was developed to purify correctly folded form of PfMSP-119 from cell lysate. Biochemical and biophysical characterization of purified PfMSP-119 suggested that it was highly pure, homogeneous, and correctly folded.  相似文献   
66.
Undifilum oxytropis (Phylum: Ascomycota; Family: Pleosporaceae) is a slow growing endophytic fungus that produces a toxic alkaloid, swainsonine. This endophyte resides in locoweeds, which are perennial flowering legumes. Consumption of this fungus by grazing animals induces a neurological disorder called locoism. The alkaloid swainsonine, an α-mannosidase inhibitor, is responsible for the field toxicity related to locoism. Little is known about the biosynthetic pathway of swainsonine in endophytic fungi. Genetic manipulation of endophytic fungi is important to better understand biochemical pathways involved in alkaloid synthesis, but no transformation system has been available for studying such enzymes in Undifilum. In this study we report the development of protoplast and transformation system for U. oxytropis. Fungal mycelia required for generating protoplasts were grown in liquid culture, then harvested and processed with various enzymes. Protoplasts were transformed with a fungal specific vector driving the expression of Enhanced Green Florescent Protein (EGFP). The quality of transformed protoplasts and transformation efficiency were monitored during the process. In all cases, resistance to antibiotic hygromycin B was maintained. Such manipulation will open avenues for future research to decipher fungal metabolic pathways.  相似文献   
67.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   
68.
It is thought that the pathological cascade in Alzheimer's disease is initiated by the formation of amyloid-β (Aβ) peptide complexes on cell membranes. However, there is considerable debate about the nature of these complexes and the type of solution-phase Aβ aggregates that may contribute to their formation. Also, it is yet to be shown that Aβ attaches strongly to living cell membranes, and that this can happen at low, physiologically relevant Aβ concentrations. Here, we simultaneously measure the aggregate size and fluorescence lifetime of fluorescently labeled Aβ1-40 on and above the membrane of cultured PC12 cells at near-physiological concentrations. We find that at 350 nM Aβ concentration, large (>>10 nm average hydrodynamic radius) assemblies of codiffusing, membrane-attached Aβ molecules appear on the cell membrane together with a near-monomeric species. When the extracellular concentration is 150 nM, the membrane contains only the smaller species, but with a similar degree of attachment. At both concentrations, the extracellular solution contains only small (∼2.3 nm average hydrodynamic radius) Aβ oligomers or monomers. We conclude that at near-physiological concentrations only the small oligomeric Aβ species are relevant, they are capable of attaching to the cell membrane, and they assemble in situ to form much larger complexes.  相似文献   
69.
We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts.  相似文献   
70.
Dengue virus, a member of the family Flaviviridae, poses a serious public health threat worldwide. Dengue virus is a positive-sense RNA virus that harbors a genome of approximately 10.7 kb. Replication of dengue virus is mediated coordinately by cis-acting genomic sequences, viral proteins, and host cell factors. We have isolated and identified several host cell factors from baby hamster kidney cell extracts that bind with high specificity and high affinity to sequences within the untranslated regions of the dengue virus genome. Among the factors identified, Y box-binding protein-1 (YB-1) and the heterogeneous nuclear ribonucleoproteins (hnRNPs), hnRNP A1, hnRNP A2/B1, and hnRNP Q, bind to the dengue virus 3'-untranslated region. Further analysis indicated that YB-1 binds to the dengue virus 3' stem loop, a conserved structural feature located at the 3' terminus of the 3'-untranslated region of many flaviviruses. Analysis of the impact of YB-1 on replication of dengue virus in YB-1+/+ and YB-1-/- mouse embryo fibroblasts indicated that host YB-1 mediates an antiviral effect. Further studies demonstrated that this antiviral impact is due, at least in part, to a repressive role of YB-1 on dengue virus translation via a mechanism that requires viral genomic sequences. These results suggest a novel role for YB-1 as an antiviral host cell factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号