首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   10篇
  2020年   4篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   11篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1997年   1篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
81.
To investigate whether alterations in mitochondrial metabolism affect longevity in Drosophila melanogaster, we studied lifespan in various single gene mutants, using inbred and outbred genetic backgrounds. As positive controls we included the two most intensively studied mutants of Indy, which encodes a Drosophila Krebs cycle intermediate transporter. It has been reported that flies heterozygous for these Indy mutations, which lie outside the coding region, show almost a doubling of lifespan. We report that only one of the two mutants lowers mRNA levels, implying that the lifespan extension observed is not attributable to the Indy mutations themselves. Moreover, neither Indy mutation extended lifespan in female flies in any genetic background tested. In the original genetic background, only the Indy mutation associated with altered RNA expression extended lifespan in male flies. However, this effect was abolished by backcrossing into standard outbred genetic backgrounds, and was associated with an unidentified locus on the X chromosome. The original Indy line with long-lived males is infected by the cytoplasmic symbiont Wolbachia, and the longevity of Indy males disappeared after tetracycline clearance of this endosymbiont. These findings underscore the critical importance of standardisation of genetic background and of cytoplasm in genetic studies of lifespan, and show that the lifespan extension previously claimed for Indy mutants was entirely attributable to confounding variation from these two sources. In addition, we saw no effects on lifespan of expression knockdown of the Indy orthologues nac-2 and nac-3 in the nematode Caenorhabditis elegans.  相似文献   
82.
83.
y(+)LAT-1 and 4F2hc are the subunits of a transporter complex for cationic amino acids, located mainly in the basolateral plasma membrane of epithelial cells in the small intestine and renal tubules. Mutations in y(+)LAT-1 impair the transport function of this complex and cause a selective aminoaciduria, lysinuric protein intolerance (LPI, OMIM #222700), associated with severe, complex clinical symptoms. The subunits of an active transporter co-localize in the plasma membrane, but the exact process of dimerization is unclear since direct evidence for the assembly of this transporter in intact human cells has not been available. In this study, we used fluorescence resonance energy transfer (FRET) microscopy to investigate the interactions of y(+)LAT-1 and 4F2hc in HEK293 cells expressing y(+)LAT-1 and 4F2hc fused with ECFP or EYFP. FRET was quantified by measuring fluorescence intensity changes in the donor fluorophore (ECFP) after the photobleaching of the acceptor (EYFP). Increased donor fluorescence could be detected throughout the cell, from the endoplasmic reticulum and Golgi complex to the plasma membrane. Therefore, our data prove the interaction of y(+)LAT-1 and 4F2hc prior to the plasma membrane and thus provide evidence for 4F2hc functioning as a chaperone in assisting the transport of y(+)LAT-1 to the plasma membrane.  相似文献   
84.
85.
This papers opens a series of publications on the mechanisms of cataractogenesis in the salmon fry. Biochemical features of normal lens development and cataractogenesis in fry of different age and age-related dynamics of the liver lipid composition during upon cataractogenesis will be dealt with, since lipids are most intensely synthesized in the liver, from where they are transported in the lens. Here, we describe the dynamics of lens lipid composition in the salmon fry, including the total lipid content and dynamics of individual classes. The data are analyzed on the fatty acid spectrum of the salmon fry lens, as compared to the human lens.  相似文献   
86.
87.
High Andean mountain forests, formed almost purely by trees of the genus Polylepis, occur nowadays as scattered remnant patches of a more continuous past distribution. Apparently, the destruction of Polylepis forests has mainly been caused by millennia of human disturbance, although forest distribution may also have fluctuated according to prevailing climatic conditions. Nowadays, the remaining Polylepis forest stands are still threatened by anthropogenic disturbance, which gradually degrades the forests. The aim of our study was to test if the structural variation of Polylepis forest patches, as an indication of forest degradation, can be predicted by accessibility to humans. The study was carried out in the Cordilleras Vilcanota and Vilcabamba, Cuzco, Peru. We used indices of forest biomass and proportion of vegetative regeneration as forest structural variables. First we examined the dependence of these variables on elevation with linear regressions. We did this separately for different Polylepis species and combining the species within humid and dry areas. Thereafter, we used the residual forest structural variation to assess possible relationships with accessibility, quantified as geographical distance to the nearest village, road or market centre. We found several significant relationships between the structural variables and accessibility, which may reflect different landscape related preferences in forest use. The results suggest accessibility can be used for rapid spatial prediction of Polylepis forest degradation, which facilitates identifying Polylepis forests that are potentially the most degraded and therefore in the most urgent need of restoration or conservation activities.  相似文献   
88.
Current rates of climate change are unprecedented, and biological responses to these changes have also been rapid at the levels of ecosystems, communities, and species. Most research on climate change effects on biodiversity has concentrated on the terrestrial realm, and considerable changes in terrestrial biodiversity and species’ distributions have already been detected in response to climate change. The studies that have considered organisms in the freshwater realm have also shown that freshwater biodiversity is highly vulnerable to climate change, with extinction rates and extirpations of freshwater species matching or exceeding those suggested for better‐known terrestrial taxa. There is some evidence that freshwater species have exhibited range shifts in response to climate change in the last millennia, centuries, and decades. However, the effects are typically species‐specific, with cold‐water organisms being generally negatively affected and warm‐water organisms positively affected. However, detected range shifts are based on findings from a relatively low number of taxonomic groups, samples from few freshwater ecosystems, and few regions. The lack of a wider knowledge hinders predictions of the responses of much of freshwater biodiversity to climate change and other major anthropogenic stressors. Due to the lack of detailed distributional information for most freshwater taxonomic groups and the absence of distribution‐climate models, future studies should aim at furthering our knowledge about these aspects of the ecology of freshwater organisms. Such information is not only important with regard to the basic ecological issue of predicting the responses of freshwater species to climate variables, but also when assessing the applied issue of the capacity of protected areas to accommodate future changes in the distributions of freshwater species. This is a huge challenge, because most current protected areas have not been delineated based on the requirements of freshwater organisms. Thus, the requirements of freshwater organisms should be taken into account in the future delineation of protected areas and in the estimation of the degree to which protected areas accommodate freshwater biodiversity in the changing climate and associated environmental changes.  相似文献   
89.
Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P < 0.001) for red clover silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P < 0.001) for red clover silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being the predominant isomer. FO inhibited the complete biohydrogenation of dietary PUFA on both diets, whilst red clover increased the flow of C18:2n-6 and C18:3n-3 compared with grass silage. In conclusion, supplementing red clover silage-based diets with FO represents a novel nutritional strategy for enhancing the concentrations of beneficial fatty acids in ruminant milk and meat.  相似文献   
90.
Birds need to acquire carotenoids for their feather pigmentation from their diet, which means that their plumage color may change as a consequence of human impact on their environment. For example, the carotenoid-based plumage coloration of Great tit, Parus major, nestlings is associated with the degree of environmental pollution. Breast feathers of birds in territories exposed to heavy metals are less yellow than those in unpolluted environments. Here we tested two hypotheses that could explain the observed pattern: (I) deficiency of carotenoids in diet, and (II) pollution-related changes in transfer of carotenoids to feathers. We manipulated dietary carotenoid levels of nestlings and measured the responses in plumage color and tissue concentrations. Our carotenoid supplementation produced the same response in tissue carotenoid concentrations and plumage color in polluted and unpolluted environments. Variation in heavy metal levels did not explain the variation in tissue (yolk, plasma, and feathers) carotenoid concentrations and was not related to plumage coloration. Instead, the variation in plumage yellowness was associated with the availability of carotenoid-rich caterpillars in territories. Our results support the hypothesis that the primary reason for pollution-related variation in plumage color is carotenoid deficiency in the diet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号