首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3010篇
  免费   366篇
  国内免费   2篇
  2022年   23篇
  2021年   45篇
  2019年   25篇
  2018年   36篇
  2017年   27篇
  2016年   69篇
  2015年   123篇
  2014年   111篇
  2013年   131篇
  2012年   152篇
  2011年   142篇
  2010年   97篇
  2009年   80篇
  2008年   125篇
  2007年   118篇
  2006年   108篇
  2005年   128篇
  2004年   100篇
  2003年   90篇
  2002年   101篇
  2001年   100篇
  2000年   89篇
  1999年   87篇
  1998年   45篇
  1997年   41篇
  1996年   42篇
  1995年   30篇
  1994年   31篇
  1993年   57篇
  1992年   64篇
  1991年   66篇
  1990年   99篇
  1989年   80篇
  1988年   74篇
  1987年   62篇
  1986年   54篇
  1985年   48篇
  1984年   39篇
  1983年   39篇
  1982年   27篇
  1981年   19篇
  1980年   20篇
  1979年   34篇
  1978年   42篇
  1977年   37篇
  1976年   30篇
  1975年   22篇
  1974年   20篇
  1973年   20篇
  1971年   17篇
排序方式: 共有3378条查询结果,搜索用时 15 毫秒
171.
Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult‐like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult‐like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes.  相似文献   
172.
173.
Predictive phylogeography seeks to aggregate genetic, environmental and taxonomic data from multiple species in order to make predictions about unsampled taxa using machine‐learning techniques such as Random Forests. To date, organismal trait data have infrequently been incorporated into predictive frameworks due to difficulties inherent to the scoring of trait data across a taxonomically broad set of taxa. We refine predictive frameworks from two North American systems, the inland temperate rainforests of the Pacific Northwest and the Southwestern Arid Lands (SWAL), by incorporating a number of organismal trait variables. Our results indicate that incorporating life history traits as predictor variables improves the performance of the supervised machine‐learning approach to predictive phylogeography, especially for the SWAL system, in which predictions made from only taxonomic and climate variables meets only moderate success. In particular, traits related to reproduction (e.g., reproductive mode; clutch size) and trophic level appear to be particularly informative to the predictive framework. Predictive frameworks offer an important mechanism for integration of organismal trait, environmental data, and genetic data in phylogeographic studies.  相似文献   
174.
Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum‐dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.  相似文献   
175.
Scientists need to find innovative ways to communicate their findings with restoration practitioners in an era of global change. Apps are a promising bridge between restoration science and practice because they apply broad scientific concepts to specific situations. For example, habitat connectivity promotes ecological function, but practitioners lack ways to incorporate connectivity into decision‐making. We created an app where users calculate how habitat restoration or loss affects connectivity. By providing our app as an example and discussing the benefits and challenges in creating apps for practitioners, we encourage other restoration ecologists to similarly create apps that bridge science with practice.  相似文献   
176.
The anaphase-promoting complex (APC) or cyclosome is a multisubunit ubiquitin-protein ligase that ubiquitinates and thereby promotes the destruction of the mitotic cyclins and the separase inhibitor, securin. The contributions of the APC to progression through the meiotic program are not clear. To clarify the function of the APC in meiosis, we screened several yeast meiotic proteins as APC substrates in vitro. We found that the meiotic regulator Spo13 is an APC substrate that is degraded during anaphase I. Spo13 is expressed only in meiotic cells, where it has multiple functions, including the promotion of monopolar chromosome attachment in the first division. Spo13 ubiquitination by the APC depends on an LxExxxN sequence (residues 26-32) that is distinct from previously described destruction sequences of APC substrates. Mutation of one residue, leucine 26, prevented Spo13 ubiquitination by the APC in vitro and stabilized the protein through the meiotic divisions. Analysis of meiotic progression and spore viability of yeast containing the stabilized Spo13 mutant revealed no significant defects, indicating that Spo13 destruction in anaphase I is not essential for meiosis. We propose that Spo13 destruction is one of multiple mechanisms underlying the switch from monopolar to bipolar chromosome attachment between the meiotic divisions.  相似文献   
177.
CCN5 Expression in mammals. II. Adult rodent tissues   总被引:1,自引:1,他引:0  
CCN5 is a secreted heparin- and estrogen-regulated matricellular protein that inhibits vertebrate smooth muscle cell proliferation and motility. CCN5 is expressed throughout murine embryonic development in most organs and tissues. However, after embryonic development is complete, we hypothesized that CCN5 distribution would be largely restricted to small set of tissues, including smooth muscle cells of the arteries, uterus, airway, and digestive tract. Because CCN5 inhibits proliferation of smooth muscle cells in vitro, it might function to prevent excessive growth in vivo. In contrast, another member of the CCN family, CCN2, promotes smooth muscle cell proliferation in vitro, and thus it was expected that its expression levels would be low in uninjured normal adult tissues. Frozen sections from adult tissues and organs were analyzed immunohistochemically using anti-CCN5 and anti-CCN2 antibodies. Both proteins were detected in arteries, the uterus, bronchioles, and the digestive tract as expected, and also in many other tissues including the pancreas, spleen, liver, skeletal muscle, ovary, testis, thymus, brain, olfactory epithelium, and kidney. CCN5 and CCN2 protein was found in smooth muscle, endothelial cells, epithelial cells, skeletal muscle, cells of the nervous system, and numerous other cell types. In many cells, both CCN5 and CCN2 was present in the nucleus. Rather than having opposite patterns of localization, CCN5 and CCN2 often had similar sites of expression. The wide distribution of both CCN5 and CCN2 suggests that both proteins have additional biological functions beyond those previously identified in specific cellular and pathological models.  相似文献   
178.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons.  相似文献   
179.
The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid Inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which It occurs. The phototroplns are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains In other signaling proteins that detect light, oxygen, or voltage) in their Nterminal half and a classic serine/threonlne kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cystelne and the C(4a) carbon of the FMN to form the signaling state. LOV2-cystelnyl adduct formation leads to the release downstream of a tightly bound amphlpathlc α-helix, a step required for activation of the klnase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototroplns. The function of LOV1 is still unknown, although It may serve to modulate the signal generated by LOV2. The LOV domain Is an ancient chromophore module found In a wide range of otherwise unrelated proteins In fungi and prokaryotes, the latter Including cyanobacterla, eubacterla, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005).  相似文献   
180.
We characterized the physical/chemical conditions and the algal and bacterial assemblages in ballast water from 62 ballast tanks aboard 28 ships operated by the U.S. Military Sealift Command and the Maritime Administration, sampled at 9 ports on the U.S. West Coast and 4 ports on the U.S. East Coast. The ballast tank waters had been held for 2–176 days, and 90% of the tanks had undergone ballast exchange with open ocean waters. Phytoplankton abundance was highly variable (grand mean for all tanks, 3.21 × 104 viable cells m−3; median, 7.9 × 103 cells m−3) and was unrelated to physical/chemical parameters, except for a positive relationship between centric diatom abundance and nitrate concentration. A total of 100 phytoplankton species were identified from the ballast tanks, including 23 potentially harmful taxa (e.g. Chaetoceros concavicornis, Dinophysis acuminata, Gambierdiscus toxicus, Heterosigma akashiwo, Karlodinium veneficum, Prorocentrum minimum, Pseudo-nitzschia multiseries). Assemblages were dominated by chain-forming diatoms and dinoflagellates, and viable organisms comprised about half of the total cells. Species richness was higher in ballast tanks with coastal water, and in tanks containing Atlantic or Pacific Ocean source waters rather than Indian Ocean water. Total and viable phytoplankton numbers decreased with age of water in the tanks. Diversity also generally decreased with water age, and tanks with ballast water age >33 days did not produce culturable phytoplankton. Abundance was significantly higher in tanks with recently added coastal water than in tanks without coastal sources, but highly variable in waters held less than 30 days. Bacterial abundance was significantly lower in ballast tanks with Atlantic than Pacific Ocean source water, but otherwise was surprisingly consistent among ballast tanks (overall mean across all tanks, 3.13 ± 1.27 × 1011 cells m−3; median, 2.79 × 1011 cells m−3) and was unrelated to vessel type, exchange status, age of water, environmental conditions measured, or phytoplankton abundance. At least one of four pathogenic eubacteria (Listeria monocytogenes, Escherichia coli, Mycobacterium spp., Pseudomonas aeruginosa) was detected in 48% of the ballast tanks, but toxigenic strains of Vibrio cholerae were not detected. For ships with tanks of similar ballasting history, the largest source of variation in phytoplankton and bacteria abundance was among ships; for ships with tanks of differing ballasting histories, and for all ships/tanks considered collectively, the largest source of variation was within ships. Significant differences in phytoplankton abundance, but not bacterial abundance, sometimes occurred between paired tanks with similar ballasting history; hence, for regulatory purposes phytoplankton abundance cannot be estimated from single tanks only. Most tanks (94%) had adequate records to determine the source locations and age of the ballast water and, as mentioned, 90% had had ballast exchange with open-ocean waters. Although additional data are needed from sediments that can accumulate at the bottom of ballast tanks, the data from this water-column study indicate that in general, U.S. Department of Defense (DoD) ships are well managed to minimize the risk for introduction of harmful microbiota. Nevertheless, abundances of viable phytoplankton with maximum dimension >50 μm exceeded proposed International Maritime Organization standards in 47% of the ballast tanks sampled. The data suggest that further treatment technologies and/or alternative management strategies will be necessary to enable DoD vessels to comply with proposed standards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号