首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   4篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2020年   2篇
  2019年   10篇
  2018年   7篇
  2017年   9篇
  2016年   13篇
  2015年   7篇
  2014年   10篇
  2013年   17篇
  2012年   22篇
  2011年   18篇
  2010年   18篇
  2009年   6篇
  2008年   21篇
  2007年   21篇
  2006年   17篇
  2005年   11篇
  2004年   10篇
  2003年   6篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
71.
Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII. These observations suggested that the light-induced damage was associated with a UV- and blue light-absorbing center in the oxygen-evolving complex of PSII. The action spectrum of the primary event in photodamage to PSII revealed the strong effects of UV and blue light and differed considerably from the absorption spectra of chlorophyll and thylakoid membranes. By contrast to the photoinduced inactivation of the oxygen-evolving complex in untreated thylakoid membranes, red light efficiently induced inactivation of the PSII reaction center in Tris-treated thylakoid membranes, and the action spectrum resembled the absorption spectrum of chlorophyll. Our observations suggest that photodamage to PSII occurs in two steps. Step 1 is the light-induced inactivation of the oxygen-evolving complex. Step 2, occurring after step 1 is complete, is the inactivation of the PSII reaction center by light absorbed by chlorophyll. We confirmed our model by illumination of untreated thylakoid membranes with blue and UV light, which inactivated the oxygen-evolving complex, and then with red light, which inactivated the photochemical reaction center.  相似文献   
72.
The effects of the energization of cells by light and by exogenous glucose on the salt-induced inactivation of the photosynthetic machinery were investigated in the cyanobacterium Synechococcus sp. PCC 7942. The incubation of the cyanobacterial cells in a medium supplemented with 0.5 M NaCl induced a rapid decline with a subsequent slow decline, in the oxygen-evolving activity of Photosystem (PS) II and in the electron-transport activity of PSI. Light and exogenous glucose each protected PSII and PSI against the second phase of the NaCl-induced inactivation. The protective effects of light and glucose were eliminated by an uncoupler of phosphorylation and by lincomycin, an inhibitor of protein synthesis. Light and glucose had similar effects on the NaCl-induced inactivation of Na(+)/H(+) antiporters. After photosynthetic and Na(+)/H(+)-antiport activities had been eliminated by the exposure of cells to 0.5 M NaCl in the darkness, both activities were partially restored by light or exogenous glucose. This recovery was prevented by lincomycin. These observations suggest that cellular energization by either photosynthesis or respiration, which is necessary for protein synthesis, is important for the recovery of the photosynthetic machinery and Na(+)/H(+) antiporters from inactivation by a high level of NaCl.  相似文献   
73.
It is shown that dinoseb, added to subchloroplast photosystem-II (PS-II) preparations from pea at a concentration higher than 5 microM, along with blocking the electron transfer on the acceptor side of PS-II, induces the following effects revealing its capability to have redox interaction with the components of PS-II reaction center (RC)-pheophytin (Pheo) and chlorophyll P680: (1) acceleration of the dark relaxation of absorbance (delta A) and chlorophyll fluorescence (delta F) changes related to photoreduction of Pheo as a result of the photoreaction [P680Pheo] [symbol: see text] [P680Pheo-] that leads to elimination of the delta A and delta F at a concentration of the inhibitor higher than 50 microM; (2) lowering of the maximum level of fluorescence (F) due to a decrease of delta F under the condition when the electron acceptor, QA, is reduced; (3) loss of the described effects of dinoseb and appearance of its capability to donate electron to RC of PS-II in the presence of dithionite which reduces dinoseb in the dark; (4) inhibition of delta A related to photooxidation of P680; (5) activation of delta A related to photooxidation P700 in photosystem-I (PS-I) preparations (a similar effect is observed upon the addition of 0.2 mM methylviologen). It is suggested that redox interaction with the pair [P680+Pheo-] leading to the shortening of its life-time contributes to the general effect of inhibition of electron transfer in PS-II by dinoseb.  相似文献   
74.
The photosynthetic machinery and, in particular, the photosystem II (PSII) complex are susceptible to strong light, and the effects of strong light are referred to as photodamage or photoinhibition. In living organisms, photodamaged PSII is rapidly repaired and, as a result, the extent of photoinhibition represents a balance between rates of photodamage and the repair of PSII. In this study, we examined the roles of electron transport and ATP synthesis in these two processes by monitoring them separately and systematically in the cyanobacterium Synechocystis sp. PCC 6803. We found that the rate of photodamage, which was proportional to light intensity, was unaffected by inhibition of the electron transport in PSII, by acceleration of electron transport in PSI, and by inhibition of ATP synthesis. By contrast, the rate of repair was reduced upon inhibition of the synthesis of ATP either via PSI or PSII. Northern blotting and radiolabeling analysis with [(35)S]Met revealed that synthesis of the D1 protein was enhanced by the synthesis of ATP. Our observations suggest that ATP synthesis might regulate the repair of PSII, in particular, at the level of translation of the psbA genes for the precursor to the D1 protein, whereas neither electron transport nor the synthesis of ATP affects the extent of photodamage.  相似文献   
75.
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet, the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins because of reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria towards neutrophils during plague infection.  相似文献   
76.
Photosynthesis Research - Effects of salinity caused by 150 mM NaCl on primary photochemical reactions and some physiological and biochemical parameters (K+/Na+ ratio, soluble sugars,...  相似文献   
77.

Revealing the genetic basis of the existence of different species living together in different geographic regions provides clarification of this phylogeographic differentiation. In this study, we investigated the population genetics and evaluated the level of genetic variation of inland and coastal populations of Mauremys and Emys in Turkey. Tissue samples of 196 terrapins were studied which were collected from syntopic coastal (Gölbent-Söke/Ayd?n; M. rivulata and E. orbicularis) and inland populations (Bahçesaray/Aksaray; M. caspica and E. orbicularis). DNA was isolated using the InnuPREP DNA Mini Kit. Mitochondrial DNA sequences and allelic variation at 13 microsatellite loci for Mauremys and 12 microsatellite loci for Emys were examined.  Three haplotypes were found for Emys orbicularis (Im, Ip and Iw) collected from the coastal region and two haplotypes for Emys orbicularis (Ig and Im) collected from inland. Two haplotypes were identified for M. caspica (Cmt8 and Cmt9) and three haplotypes were identified for M. rivulata (Rmt3, Rmt24 and Rmt26). Using microsatellites and the software STRUCTURE the most probable value for K was revealed as two 2 for both species. The FST value between M. rivulata and M. caspica was 0.39, and between the coastal and inland populations of E. orbicularis 0.09. It can be concluded that Emys populations tend to evolve by somehow preserving the allelic richness they have and Mauremys populations continue to differentiate so that new species emerge in the evolutionary process to reach the ideal allelic structure.

  相似文献   
78.
Molecular Biology Reports - Valproic acid (VPA) is a selective histone deacetylation (HDAC) inhibitor and exerts anti-cancer properties in different types of cancer. The epithelial-to-mesenchymal...  相似文献   
79.
Toxigenic Corynebacterium diphtheriae strains cause diphtheria in humans. The toxigenic C. diphtheriae isolate NCTC13129 produces three distinct heterotrimeric pili that contain SpaA, SpaD, and SpaH, making up the shaft structure. The SpaA pili are known to mediate bacterial adherence to pharyngeal epithelial cells. However, to date little is known about the expression of different pili in various clinical isolates and their importance in bacterial pathogenesis. Here, we characterized a large collection of C. diphtheriae clinical isolates for their pilin gene pool by PCR and for the expression of the respective pilins by immunoblotting with antibodies against Spa pilins. Consistent with the role of a virulence factor, the SpaA-type pili were found to be prevalent among the isolates, and most significantly, corynebacterial adherence to pharyngeal epithelial cells was strictly correlated with isolates that were positive for the SpaA pili. By comparison, the isolates were heterogeneous for the presence of SpaD- and SpaH-type pili. Importantly, using Caenorhabditis elegans as a model host for infection, we show here that strain NCTC13129 rapidly killed the nematodes, the phenotype similar to isolates that were positive for toxin and all pilus types. In contrast, isogenic mutants of NCTC13129 lacking SpaA-type pili or devoid of toxin and SpaA pili exhibited delayed killing of nematodes with similar kinetics. Consistently, nontoxigenic or toxigenic isolates that lack one, two, or all three pilus types were also attenuated in virulence. This work signifies the important role of pili in corynebacterial pathogenesis and provides a simple host model to identify additional virulence factors.  相似文献   
80.
The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号