首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   19篇
  国内免费   1篇
  2022年   4篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   15篇
  2012年   19篇
  2011年   20篇
  2010年   18篇
  2009年   8篇
  2008年   9篇
  2007年   15篇
  2006年   17篇
  2005年   13篇
  2004年   5篇
  2003年   6篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1975年   3篇
  1970年   1篇
排序方式: 共有260条查询结果,搜索用时 31 毫秒
41.
Human infections with non-typhoidal Salmonella (NTS) serovars are increasingly becoming a threat to human health globally. While all motile Salmonellae have zoonotic potential, Salmonella Enteritidis and Salmonella Typhimurium are most commonly associated with human disease, for which poultry are a major source. Despite the increasing number of human NTS infections, the epidemiology of NTS in poultry in India has not been fully understood. Hence, as a first step, we carried out epidemiological analysis to establish the incidence of NTS in poultry to evaluate the risk to human health. A total of 1215 samples (including poultry meat, tissues, egg and environmental samples) were collected from 154 commercial layer farms from southern India and screened for NTS. Following identification by cultural and biochemical methods, Salmonella isolates were further characterized by multiplex PCR, allele-specific PCR, enterobacterial repetitive intergenic consensus (ERIC) PCR and pulse field gel electrophoresis (PFGE). In the present study, 21/1215 (1.73 %) samples tested positive for NTS. We found 12/392 (3.06 %) of tissue samples, 7/460 (1.52 %) of poultry products, and 2/363 (0.55 %) of environmental samples tested positive for NTS. All the Salmonella isolates were resistant to oxytetracycline, which is routinely used as poultry feed additive. The multiplex PCR results allowed 16/21 isolates to be classified as S. Typhimurium, and five isolates as S. Enteritidis. Of the five S. Enteritidis isolates, four were identified as group D Salmonella by allele-specific PCR. All of the isolates produced different banding patterns in ERIC PCR. Of the thirteen macro restriction profiles (MRPs) obtained by PFGE, MRP 6 was predominant which included 6 (21 %) isolates. In conclusion, the findings of the study revealed higher incidence of contamination of NTS Salmonella in poultry tissue and animal protein sources used for poultry. The results of the study warrants further investigation on different type of animal feed sources, food market chains, processing plants, live bird markets etc., to evaluate the risk factors, transmission and effective control measures of human Salmonella infection from poultry products.  相似文献   
42.

Questions

Water availability is known to be a first‐order driver of plant diversity; yet water also affects fire regimes and soil fertility, which, in turn, affect plant diversity. We examined how precipitation, fire and soil properties jointly determine woody plant diversity. Specifically, we asked how woody plant diversity varies along a sharp precipitation gradient (about 600–1,800 mm mean annual precipitation [MAP ]within a ~45‐km distance) exhibiting considerable variation in long‐term fire burn frequency and soil fertility, in a southern Indian seasonally dry tropical forest (SDTF ) landscape.

Location

Mudumalai, Western Ghats, India.

Methods

Woody plants ≥1‐cm DBH were enumerated in 19 1‐ha permanent plots spanning a range of tropical vegetation types from dry thorn forest, through dry and moist deciduous forest to semi‐evergreen forest. Burn frequencies were derived from annual fire maps. Six measures of surface soil properties – total exchangeable bases (Ca + Mg + K), organic carbon (OC ), total N, pH , plant available P and micronutrients (Fe + Cu + Zn + Mn) were used in the analyses. Five measures of diversity – species richness, Shannon diversity, the rarefied/extrapolated versions of these two measures, and Fisher's α – were modelled as functions of MAP , annual fire burn frequency and the principal components of soil properties.

Results

Most soil nutrients and OC increased with MAP , except in the wettest sites. Woody productivity increased with MAP , while fire frequency was highest at intermediate values of MAP . Woody plant diversity increased with MAP but decreased with increasing fire frequency, resulting in two local diversity maxima along the MAP gradient – in the semi‐evergreen and dry thorn forest – separated by a low‐diversity central region in dry deciduous forest where fire frequency was highest. Soil variables were, on the whole, less strongly correlated with diversity than MAP .

Conclusions

Although woody plant diversity in this landscape, representative of regional SDTF s, is primarily limited by water availability, our study emphasizes the role of fire as a potentially important second‐order driver that acts to reduce diversity in this landscape.
  相似文献   
43.
Growth, viability and proline content of adapted and unadapted calluses of Nicotiana tabacum L. var. Jayasri, affected due to osmotic stresses and particularly to stress-shocks treated with different osmotica like NaCl (ionic-penetrating), mannitol (non-ionic-penetrating) and polyethylene glycol, (PEG) (non-ionic-non penetrating) were studied to evaluate the physiological differences of stress effects. The tissues adapted to a low concentration of NaCl (85 mM) showed low growth with high proline content compared to the tissues adapted to a low concentration of mannitol (165 mM). Proline content was similar in tissues adapted to high concentrations of NaCl (171 mM) and mannitol (329 mM) but growth in the latter case was relatively low. Growth and viability were subsequently correlated with the pattern of retention in or diffusion of proline out of the tissues after shock-treatments. The loss of tissue viability of the adapted calluses was comparatively less than the unadapted callus even after shock-treatments with 1282 mM NaCl and 823 mM mannitol. The former calluses retained the capability of regrowth though at a slow rate. Such adapted tissues also retained more proline. The mannitol-adapted tissues, when shocked with PEG (200 g l-1), showed low viability with more diffusion and a very little retention of proline while, in the unadapted tissue, all the proline was leached out. The results indicated that the effects of different osmotica on plant tissue varied depending upon the physico-chemical nature of the compounds used as stress-inducing-agents, and retention and diffusion of proline was altered when the tissues were shocked with high concentrations of all these compounds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
44.
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We characterized the auxin transport and gravitropic phenotypes of the pinoid-9 (pid-9) mutant of Arabidopsis (Arabidopsis thaliana) and tested the hypothesis that phosphorylation mediated by PID kinase and dephosphorylation regulated by the ROOTS CURL IN NAPHTHYLPHTHALAMIC ACID1 (RCN1) protein might antagonistically regulate root auxin transport and gravity response. Basipetal indole-3-acetic acid transport and gravitropism are reduced in pid-9 seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor staurosporine phenocopies the reduced auxin transport and gravity response of pid-9, while pid-9 is resistant to inhibition by staurosporine. Staurosporine and the phosphatase inhibitor, cantharidin, delay the asymmetric expression of DR5∷revGFP (green fluorescent protein) at the root tip after gravistimulation. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine and cantharidin, respectively. The pid-9 rcn1 double mutant has a more rapid gravitropic response than rcn1. These data are consistent with a reciprocal regulation of gravitropism by RCN1 and PID. Furthermore, the effect of staurosporine is lost in pinformed2 (pin2). Our data suggest that reduced PID kinase function inhibits gravitropism and basipetal indole-3-acetic acid transport. However, in contrast to PID overexpression studies, we observed wild-type asymmetric membrane distribution of the PIN2 protein in both pid-9 and wild-type root tips, although PIN2 accumulates in endomembrane structures in pid-9 roots. Similarly, staurosporine-treated plants expressing a PIN2GFP fusion exhibit endomembrane accumulation of PIN2∷GFP, but no changes in membrane asymmetries were detected. Our data suggest that PID plays a limited role in root development; loss of PID activity alters auxin transport and gravitropism without causing an obvious change in cellular polarity.A variety of important growth and developmental processes, including gravity response, embryo and vascular development, and the branching of roots and shoots, are controlled by the directional and regulated transport of auxin in higher plants. Reversible protein phosphorylation is an important regulatory strategy that may modulate auxin transport and dependent processes such as root gravitropism, perhaps through action of the PINOID (PID) kinase (for review, see DeLong et al., 2002; Galvan-Ampudia and Offringa, 2007). PID is an AGC family Ser/Thr kinase (Christensen et al., 2000) and belongs to an AGC kinase clade containing WAG1, WAG2, AGC3-4, and D6PK/AGC1-1 (Santner and Watson, 2006; Galvan-Ampudia and Offringa, 2007; Zourelidou et al., 2009). PID activity has been demonstrated in vitro and in vivo (Christensen et al., 2000; Michniewicz et al., 2007), and several pid mutant alleles exhibit altered auxin transport in the inflorescence and a floral development defect resembling that of auxin transport mutants (Bennett et al., 1995). Overexpression of the PID gene results in profound alterations in root development and responses to auxin transport inhibitors, reduced gravitropism and auxin accumulation at the root tip (Christensen et al., 2000; Benjamins et al., 2001; Michniewicz et al., 2007), as well as enhanced indole-3-acetic acid (IAA) efflux in tobacco (Nicotiana tabacum) cell cultures (Lee and Cho, 2006) and altered PINFORMED1 (PIN1), PIN2, and PIN4 localization patterns (Friml et al., 2004; Michniewicz et al., 2007), consistent with PID being a positive regulator of IAA efflux. However, the effects of pid loss-of-function mutations on auxin transport activities and gravitropic responses in roots have not yet been reported (Robert and Offringa, 2008).In contrast, auxin transport and gravitropism defects of a mutant with reduced protein phosphatase activity have been characterized in detail. The roots curl in naphthylphthalamic acid1 (rcn1) mutation, which ablates the function of a protein phosphatase 2A regulatory subunit, causes reduced PP2A activity in vivo and in vitro (Deruère et al., 1999). Roots and hypocotyls of rcn1 seedlings have elevated basipetal auxin transport (Deruère et al., 1999; Rashotte et al., 2001; Muday et al., 2006), and rcn1 roots exhibit a significant delay in gravitropism, consistent with altered auxin transport (Rashotte et al., 2001; Shin et al., 2005). These data indicate that PP2A is a negative regulator of basipetal transport and suggest that if PID-dependent phosphorylation regulates root auxin transport and gravitropism, then it may act in opposition to PP2A-dependent dephosphorylation.In roots, auxin transport is complex, with distinct sets of influx and efflux carriers that define tissue-specific and opposing directional polarities (for review, see Leyser, 2006). IAA moves acropetally, from the shoot toward the root apex, through the central cylinder (Tsurumi and Ohwaki, 1978), and basipetally, from the root apex toward the base, through the outer layer of cells (for review, see Muday and DeLong, 2001). When plants are reoriented relative to the gravity vector, auxin becomes asymmetrically distributed across the root tip, as a result of a process termed lateral auxin transport (for review, see Muday and Rahman, 2008). Several carriers that mediate root basipetal IAA transport have been clearly defined and include the influx carrier AUXIN-INSENSITIVE1 (AUX1; Marchant et al., 1999; Swarup et al., 2004; Yang et al., 2006) and efflux carriers of two classes, PIN2 (Chen et al., 1998; Müller et al., 1998; Rashotte et al., 2000) and ATP-BINDING CASSETTE TYPE B TRANSPORTER4/MULTIDRUG-RESISTANT4/P-GLYCOPROTEIN4 (ABCB4/MDR4/PGP4; Geisler et al., 2005; Terasaka et al., 2005; Lewis et al., 2007). Lateral transport at the root tip may be mediated by PIN3, an efflux carrier with a gravity-dependent localization pattern (Friml et al., 2002; Harrison and Masson, 2007).Gravitropic curvature of Arabidopsis (Arabidopsis thaliana) roots requires changes in IAA transport at the root tip (for review, see Muday and Rahman, 2008). Auxin transport inhibitors (Rashotte et al., 2000) and mutations in genes encoding basipetal transporters, including aux1 (Bennett et al., 1996), pin2/agr1 (Chen et al., 1998; Müller et al., 1998), and abcb4/mdr4/pgp4 (Lin and Wang, 2005; Lewis et al., 2007), alter gravitropism. Auxin-inducible reporters exhibit asymmetric expression across the root tip prior to differential growth, and this asymmetry is abolished by treatment with auxin transport inhibitors that prevent gravitropic curvature (Rashotte et al., 2001; Ottenschläger et al., 2003). Additionally, the pin3 mutant exhibits slightly reduced rates of gravitropic curvature (Harrison and Masson, 2007), and PIN3 is expressed in the columella cells, which are the site of gravity perception (Blancaflor et al., 1998; Friml et al., 2002). The PIN3 protein relocates to membranes on the lower side of columella cells after gravitropic reorientation, consistent with a role in facilitating asymmetric IAA transport at the root tip (Friml et al., 2002; Harrison and Masson, 2007).The available data suggest a model in which PID and RCN1 antagonistically regulate basipetal transport and gravitropic response in root tips (Fig. 1). In this model, the regions with the highest IAA concentrations in the epidermal and cortical cell layers are indicated by shading, and the arrows indicate the direction and relative amounts of basipetal auxin transport. Our previous work suggests that elevated basipetal IAA transport in rcn1 roots impairs gravitropic response, presumably due to the inability of roots either to form or to perceive a lateral auxin gradient in the context of a stronger polar IAA transport stream (Rashotte et al., 2001). Enhanced basipetal transport may increase the initial auxin concentration along the upper side of the root, impeding the establishment or perception of a gradient in rcn1 and cantharidin-treated wild-type roots (Fig. 1, right). Based on the published pid inflorescence transport data (Bennett et al., 1995), we hypothesize that pid seedling roots and staurosporine-treated wild-type roots have reduced basipetal auxin transport (Fig. 1, left). Upon reorientation of roots relative to the gravity vector, the reduced basipetal IAA transport in pid may lead to slower establishment of an auxin gradient across the root. This model then predicts that cantharidin treatment of pid-9 or staurosporine treatment of rcn1 seedlings would enhance or restore gravitropism in these mutants. Similarly, a double mutant might be expected to exhibit a corrected gravitropic response relative to the single mutants.Open in a separate windowFigure 1.Auxin transport defects in pid-9 and rcn1 mutants alter auxin redistribution after reorientation relative to the gravity vector. This model predicts that differences in basipetal auxin transport activities of wild-type, pid-9, and rcn1 roots will affect the formation of lateral auxin gradients. The shaded area in each root represents the region of highest IAA concentration in epidermal and cortical cells, with darker shading in the central columella cells, believed to be the auxin maxima. The direction and amount of basipetal IAA transport are indicated by arrows. The region of differential growth during gravitropic bending is indicated by the shaded rectangle. If auxin transport is reduced (as shown in the pid-9 mutant or in staurosporine-treated seedlings), this would lead to a slower formation of an auxin gradient in root tips. The rcn1 mutation (or treatment with cantharidin) has already been shown to lead to increased basipetal transport and a reduced rate of gravitropic bending, consistent with altered formation or perception of an auxin gradient. The antagonistic effects of kinase and phosphatase inhibition are predicted to lead to normal gravity responses in the pid-9 rcn1 double mutant as well as in pid-9 and rcn1 single mutants treated with the “reciprocal” inhibitor.The experiments described here were designed to test this model by examining gravitropism and root basipetal IAA transport in pid and staurosporine-treated seedlings. We investigated the regulation of gravity response by PID kinase and RCN1-dependent PP2A activities and observed antagonistic interactions between the rcn1 and pid-9 loss-of-function phenotypes that are consistent with reciprocal kinase/phosphatase regulation. We found that loss of kinase activity in the pid mutant and in staurosporine-treated wild-type plants inhibits basipetal auxin transport and the dependent physiological process of root gravitropism. Our results suggest that staurosporine acts to regulate these processes through inhibition of PID kinase and that PID effects are PIN2 dependent. In both wild-type and pid-9 roots, we observed polar membrane distribution of the PIN2 protein; unlike wild-type roots, though, pid-9 roots exhibited modest accumulation of PIN2 in endomembrane structures. Similarly, we detected asymmetric distribution and endomembrane accumulation of PIN2∷GFP in staurosporine-treated roots. Our data suggest that PID plays a limited role in root development; loss of PID activity alters PIN2 trafficking, auxin transport, and gravitropism without causing an obvious loss of cellular polarity. Together, these experiments provide insight into phosphorylation-mediated control of the gravity response and auxin transport in Arabidopsis roots.  相似文献   
45.
The mutation of the axial ligand of the type I copper protein amicyanin from Met to Lys results in a protein that is spectroscopically invisible and redox inactive. M98K amicyanin acts as a competitive inhibitor in the reaction of native amicyanin with methylamine dehydrogenase indicating that the M98K mutation has not affected the affinity for its natural electron donor. The crystal structure of M98K amicyanin reveals that its overall structure is very similar to native amicyanin but that the type I binding site is occupied by zinc. Anomalous difference Fourier maps calculated using the data collected around the absorption edges of copper and zinc confirm the presence of Zn2+ at the type I site. The Lys98 NZ donates a hydrogen bond to a well-ordered water molecule at the type I site which enhances the ability of Lys98 to provide a ligand for Zn2+. Attempts to reconstitute M98K apoamicyanin with copper resulted in precipitation of the protein. The fact that the M98K mutation generated such a selective zinc-binding protein was surprising as ligation of zinc by Lys is rare and this ligand set is unique for zinc.  相似文献   
46.
Sheep grazing in Western Australia can partially or completely refuse to consume annual Medicago pods contaminated with a number of different Fusarium species. Many Fusarium species are known to produce trichothecenes as part of their array of toxigenic secondary metabolites, which are known to cause feed refusal in animals. This study reports the identity of Fusarium species using species-specific PCR primers and a characterization of the toxigenic secondary metabolites produced by 24 Fusarium isolates associated with annual legume-based pastures and particularly those associated with sheep feed refusal disorders in Western Australia. Purification of the fungal extracts was facilitated by a bioassay-guided fractionation using brine shrimp. A number of trichothecenes (3-acetyldeoxynivalenol, deoxynivalenol, fusarenon-X, monoacetoxyscirpenols, diacetoxyscirpenol, scirpentriol, HT-2 toxin and T-2 toxin), enniatins (A, A1, B, and B1), chlamydosporol and zearalenone were identified using GC/MS and/or NMR spectroscopy. Some of the crude extracts and fractions showed significant activity against brine shrimp at concentrations as low as 5 μg ml-1, and are likely to be involved in the sheep feed refusal disorders. This is the first report of chlamydosporol production by confirmed Fusarium spp.; of the incidence of F. brachygibbosum and F. venenatum in Australia and of F. tricinctum in Western Australia; and of mycotoxin production by Fusarium species from Western Australia.  相似文献   
47.
48.
Due to the risks to the foetus with invasive prenatal diagnosis, non-invasive prenatal diagnosis (NIPD) is gaining tremendous interest but no reliable method that can be widely used has been developed to date. Manipulation of foetal cells and foetal cell-free genetic material in the maternal blood are two promising approaches being researched. The manipulation of foetal cells in the maternal circulation is more popular as it can provide complete genetic information of the foetus particularly the diagnosis of aneuploidies. However, the foetal cell numbers in the maternal circulation are small and their enrichment and ex vivo culture remain two major challenges for NIPD. Primitive foetal erythroblasts (pFEs) have been considered as a good potential candidate for early first trimester NIPD but their nature, properties and manipulation to provide adequate cell numbers remain a challenging task and several approaches need to be meticulously evaluated. In this review we describe the current status of NIPD and suggest some novel approaches in manipulating pFEs for future clinical application of NIPD. These novel approaches include (1) understanding the pFE enucleation process, (2) enriching pFE numbers by individual pick-up of pFEs from maternal blood using micromanipulation and microdroplet culture, (3) expansion of pFEs using mitogens and (4) decondensation of the pFE nucleus with histone deacetylase (HDAC) inhibitors followed by reprogramming using gene delivery protocols with/without small reprogramming molecules to improve reprogrammed pFE proliferation rates for successful NIPD.  相似文献   
49.

Background

Cancer-associated fibroblasts (CAFs) are one of the most important components of tumor stroma and play a key role in modulating tumor growth. However, a mechanistic understanding of how CAFs communicate with tumor cells to promote their proliferation and invasion is far from complete. A major reason for this is that most current techniques and model systems do not capture the complexity of signal transduction that occurs between CAFs and tumor cells.

Methods

In this study, we employed a stable isotope labeling with amino acids in cell culture (SILAC) strategy to label invasive breast cancer cells, MDA-MB-231, and breast cancer patient-derived CAF cells. We used an antibody-based phosphotyrosine peptide enrichment method coupled to LC–MS/MS to catalog and quantify tyrosine phosphorylation-mediated signal transduction events induced by the bidirectional communication between patient-derived CAFs and tumor cells.

Results

We discovered that distinct signaling events were activated in CAFs and in tumor epithelial cells during the crosstalk between these two cell types. We identified reciprocal activation of a number of receptor tyrosine kinases including EGFR, FGFR1 and EPHA2 induced by this bidirectional communication.

Conclusions

Our study not only provides insights into the mechanisms of the interaction between CAFs and tumor cells, but the model system described here could be used as a prototype for analysis of intercellular communication in many different tumor microenvironments.
  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号