首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
  124篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   10篇
  2010年   1篇
  2009年   3篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
11.
The eukaryotic cytoskeletal protein tubulin is a heterodimer of two subunits, alpha and beta, and is a building block unit of microtubules. In a previous communication we demonstrated that tubulin possesses chaperone-like activities by preventing the stress-induced aggregation of various proteins (Guha, S., Manna, T. K., Das, K. P., and Bhattacharyya, B. (1998) J. Biol. Chem. 273, 30077-30080). As an extension of this observation, we explored whether tubulin, like other known chaperones, also protected biological activity of proteins against thermal stress or increased the yields of active proteins during refolding from a denatured state. We show here that tubulin not only prevents the thermal aggregation of alcohol dehydrogenase and malic dehydrogenase but also protects them from loss of activity. We also show that tubulin prevents the aggregation of substrates during their refolding from a denatured state and forms a stable complex with denatured substrate. The activity of malic dehydrogenase, alpha-glucosidase, and lactate dehydrogenase during their refolding from urea or guanidium hydrochloride denatured states increased significantly in presence of tubulin compared with that without tubulin. These results suggest that tubulin, in addition to its role in mitosis, cell motility, and other cellular events, might be implicated in protein folding and protection from stress.  相似文献   
12.
13.
A biosurfactant producing microbe isolated from a river bank was identified as Lysinibacillus fusiformis S9. It was identified with help of biochemical tests and 16S rRNA gene phylogenetic analysis. The biosurfactant S9BS produced was purified and characterized as glycolipid. The biosurfactant showed remarkable inhibition of biofilm formation by pathogenic bacteria like Escherichia coli and Streptococcus mutans. It was interesting to note that at concentration of 40 μg ml?1 the biosurfactant did not show any bactericidal activity but restricted the biofilm formation completely. L. fusiformis is reported for the first time to produce a glycolipid type of biosurfactant capable of inhibiting biofilm formation by pathogenic bacteria. The biosurfactant inhibited bacterial attachment and biofilm formation equally well on hydrophilic as well as hydrophobic surfaces like glass and catheter tubing. This property is significant in many biomedical applications where the molecule should help in preventing biofouling of surfaces without being toxic to biotic system.  相似文献   
14.
The present study estimated length–weight relationships (LWRs) for six indigenous fish species (Barilius gatensis, Salmostoma acinaces, S. boopis, Puntius amphibius, Hemibagrus punctatus and Ambassis miops) based on specimens collected from River Cauvery (including estuary) during July 2017–January 2020. The sampling surveys were carried out in three distinct sampling seasons, viz., the pre-monsoon (March–May), the monsoon (July–October) and the post-monsoon (November–February). Majority of the fish specimens dealt in the study were collected from multi-meshed monofilament gill nets (mesh sizes 18, 30, 45, 60, 90, 110, 120 and 150 mm) operated by local fishers. For those sites situated in the protected areas, sampling was carried out by cast nets with prior permission from the local administration and the collected fishes were released back into river after length–weight measurements. The length measurements were noted as total length (TL) measured to the nearest 0.1 cm by using a digital Vernier caliper. A digital balance was used for weight measurements with an accuracy of 0.01 g. The study recorded a new maximum length of 48 cm for H. punctatus. The LWR data generated from the present study are significant for proper assessment of the stock status and their management, if collected together with other essential biological and physical parameters.  相似文献   
15.
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.  相似文献   
16.
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation.  相似文献   
17.
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35–38%), 4p15.2 (D3: 37–40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37–59%) and 4q35.1 (D6: 40–50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri →CIN → CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (−432 to + 55 bp), CC and AA haplotypes were seen in −227 and −195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.  相似文献   
18.
The betagamma subunit of G proteins (Gbetagamma) is known to transfer signals from cell surface receptors to intracellular effector molecules. Recent results suggest that Gbetagamma also interacts with microtubules and is involved in the regulation of the mitotic spindle. In the current study, the anti-microtubular drug nocodazole was employed to investigate the mechanism by which Gbetagamma interacts with tubulin and its possible implications in microtubule assembly in cultured PC12 cells. Nocodazole-induced depolymerization of microtubules drastically inhibited the interaction between Gbetagamma and tubulin. Gbetagamma was preferentially bound to microtubules and treatment with nocodazole suggested that the dissociation of Gbetagamma from microtubules is an early step in the depolymerization process. When microtubules were allowed to recover after removal of nocodazole, the tubulin-Gbetagamma interaction was restored. Unlike Gbetagamma, however, the interaction between tubulin and the alpha subunit of the Gs protein (Gsalpha) was not inhibited by nocodazole, indicating that the inhibition of tubulin-Gbetagamma interactions during microtubule depolymerization is selective. We found that Gbetagamma also interacts with gamma-tubulin, colocalizes with gamma-tubulin in centrosomes, and co-sediments in centrosomal fractions. The interaction between Gbetagamma and gamma-tubulin was unaffected by nocodazole, suggesting that the Gbetagamma-gamma-tubulin interaction is not dependent on assembled microtubules. Taken together, our results suggest that Gbetagamma may play an important and definitive role in microtubule assembly and/or stability. We propose that betagamma-microtubule interaction is an important step for G protein-mediated cell activation. These results may also provide new insights into the mechanism of action of anti-microtubule drugs.  相似文献   
19.
20.
The tetragonal-pyramidal VO2+ complexes [VO{(RSC-S)N-NX}2] (1-6) were synthesised by the reactions of VO(OCHMe2)3 with the dithiocarbazate ligands RSC(S)-NH-NX, where X = cyclo-pentyl, cyclo-hexyl or 4-Me2N-C6H4-CH, and R = CH3 or CH2C6H5. The compounds were characterised by elemental analysis, IR- and mass spectrometries, and in cases of compounds 1, 3, 4 and 5, by X-ray diffraction. The chiral compound 4 (X = cyclo-hexyl, R = CH2C6H5) crystallises in the C configuration. In compound 5, the VO moiety is disordered (83.3:16.7%) with respect to the plane spanned by the four equatorial ligand functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号