首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1566篇
  免费   146篇
  国内免费   1篇
  2023年   13篇
  2022年   14篇
  2021年   42篇
  2020年   29篇
  2019年   28篇
  2018年   42篇
  2017年   29篇
  2016年   55篇
  2015年   73篇
  2014年   72篇
  2013年   88篇
  2012年   117篇
  2011年   116篇
  2010年   55篇
  2009年   55篇
  2008年   65篇
  2007年   77篇
  2006年   72篇
  2005年   55篇
  2004年   62篇
  2003年   36篇
  2002年   42篇
  2001年   35篇
  2000年   34篇
  1999年   22篇
  1998年   12篇
  1997年   8篇
  1995年   7篇
  1994年   10篇
  1993年   13篇
  1992年   16篇
  1991年   30篇
  1990年   21篇
  1989年   19篇
  1988年   18篇
  1987年   12篇
  1986年   15篇
  1985年   8篇
  1984年   22篇
  1983年   9篇
  1982年   13篇
  1981年   9篇
  1979年   12篇
  1978年   11篇
  1977年   14篇
  1975年   11篇
  1972年   9篇
  1970年   13篇
  1966年   9篇
  1965年   7篇
排序方式: 共有1713条查询结果,搜索用时 16 毫秒
151.
Zheng L  Dai H  Hegde ML  Zhou M  Guo Z  Wu X  Wu J  Su L  Zhong X  Mitra S  Huang Q  Kernstine KH  Pfeifer GP  Shen B 《Cell research》2011,21(7):1052-1067
DNA replication and repair are critical processes for all living organisms to ensure faithful duplication and transmission of genetic information. Flap endonuclease 1 (Fen1), a structure-specific nuclease, plays an important role in multiple DNA metabolic pathways and maintenance of genome stability. Human FEN1 mutations that impair its exonuclease activity have been linked to cancer development. FEN1 interacts with multiple proteins, including proliferation cell nuclear antigen (PCNA), to form various functional complexes. Interactions with these proteins are considered to be the key molecular mechanisms mediating FEN1's key biological functions. The current challenge is to experimentally demonstrate the biological consequence of a specific interaction without compromising other functions of a desired protein. To address this issue, we established a mutant mouse model harboring a FEN1 point mutation (F343A/F344A, FFAA), which specifically abolishes the FEN1/PCNA interaction. We show that the FFAA mutation causes defects in RNA primer removal and long-patch base excision repair, even in the heterozygous state, resulting in numerous DNA breaks. These breaks activate the G2/M checkpoint protein, Chk1, and induce near-tetraploid aneuploidy, commonly observed in human cancer, consequently elevating the transformation frequency. Consistent with this, inhibition of aneuploidy formation by a Chk1 inhibitor significantly suppressed the cellular transformation. WT/FFAA FEN1 mutant mice develop aneuploidy-associated cancer at a high frequency. Thus, this study establishes an exemplary case for investigating the biological significance of protein-protein interactions by knock-in of a point mutation rather than knock-out of a whole gene.  相似文献   
152.
N-terminal fusion tags that enhance translation initiation or protein solubility are often used to facilitate protein overexpression. As the optimal tag for a given target protein cannot be predicted a priori, valuable time can be lost in cloning and manipulating the corresponding gene to generate different fusion constructs for expression analysis. We have developed a cell-free strategy that consolidates these steps, enabling the utility of a panel of nine fusion-tags to be determined within one to two days. This approach exploits the fact that PCR-amplified DNA can be used as a template for cell-free protein synthesis. Overlap/extension PCR using the TEV protease site as the overlap region allows the fusion of different T7 promoter (T7p)-tag-TEV DNA fragments with a TEV-gene-T7 terminator (T7ter) fragment. For tag sequences where the TEV site is not compatible, a short C?G? repeat (CGr) sequence can be used as the overlap region. The resulting T7p-tag-TEV-gene-T7ter constructs are then used as templates for PCR-directed cell-free protein synthesis to identify which tag-TEV-gene fusion protein produces the highest amount of soluble protein. We have successfully applied this approach to the overexpression of the Adiponectin hypervariable domain (AHD). Five of the nine N-terminal fusion tags tested enabled the synthesis of soluble recombinant protein. The best of these was the Peptidyl-prolylcis-trans isomerise B (PpiB) fusion tag which produces 1mg/ml amounts of soluble fusion protein. PpiB is an example of a new class of fusion tag known as the "stress-responsive proteins". Our results suggest that this cell-free fusion-tag expression screen facilitates the rapid identification of suitable fusion-tags that overcome issues such as poor expression and insolubility, often encountered using conventional approaches.  相似文献   
153.
Tissue regeneration may be stimulated by growth factors but to be effective, this delivery must be sustained and requires delivery vehicles that overcome the short half-life of these molecules in vivo. One promising approach is to couple growth factors to the biomaterial surface so that they are readily bioavailable. Here the layer-by-layer process was used to construct a multilayered polyelectrolyte delivery system on the surface of poly(lactic-co-glycolic) acid constructs. The system was first optimized on a planar surface before translation to a 3D microsphere system. The layers incorporated heparin to facilitate the loading of basic fibroblast growth factor and increase growth factor stability. Cross-linked capping layers also reduced any burst release. The model growth factor was released in a sustained manner and stimulated significantly higher cell proliferation in vitro on release compared with the addition of the growth factor heparin complex free in solution, demonstrating the promise of this approach.  相似文献   
154.
Genetic networks and soft computing   总被引:1,自引:0,他引:1  
The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.  相似文献   
155.
A polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) with an inner arrangement consisting of eight equidistantly spaced rectangular strips mounted radially on a circular disk to provide additional surface area for fungal attachment was employed for production of cellulase by Chaetomium crispatum and xylanase by Gliocladium viride. The design allowed comparison of production between CCFs with hydrophobic surface (PMMA-CCF), hydrophilic glass surface (GS-CCF) and 500-ml Erlenmeyer flask (EF). Compared with the EF, endo-β-1,4-glucanase and FPase (filter paper degradation) activities increased from 0.044 to 0.156 and from 0.008 to 0.021 IU/ml, respectively, in the PMMA-CCF, while growth of C. crispatum was higher by at most 1.38-fold compared with the other vessels. Xylanase production in the EF was at most 5.08-fold higher and growth of G. viride was at most 1.52-fold higher compared with the other vessels. Temporal pattern of biofilm development based on two-channel fluorescence detection of extracellular polymeric substances (EPSs) and whole cells in a confocal laser scanning microscope demonstrated increase by 100% in biovolume, 25% in thickness and 62.5% both in substratum coverage and total spreading of C. crispatum biofilm in PMMA-CCF over 6 days. Biovolume of G. viride biofilm in GS-CCF increased by 150% over 4 days while that in PMMA-CCF enhanced by 200% over 2 days. Biofilm thickness in PMMA-CCF was 44% higher compared with GS-CCF and increased by 175% over 2 days. Substratum coverage was 38% higher in GS-CCF compared with PMMA-CCF. Thus, reactor surface area and property, shear forces and biofilm formation influenced enzyme production.  相似文献   
156.
The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellular T-cell protein tyrosine phosphatase TC-PTP (PTPN2) using the human neuroblastoma cell line, IMR-32. In vivo and in vitro binding assays demonstrated interaction between C3G and TC-PTP. Interaction is mediated through the Crk-binding region of C3G and C-terminal noncatalytic residues of TC-PTP. C3G interacted better with a substrate trap mutant of TC48 and this complex formation was inhibited by vanadate. Endogenous pC3G colocalized with catalytically inactive mutant TC48 in the Golgi. Expression of TC48 abrogated pervanadate and c-Src induced phosphorylation of C3G without affecting total cellular phospho-tyrosine. Insulin-like growth factor treatment of c-Src expressing cells resulted in dephosphorylation of C3G dependent on the activity of endogenous TC48. TC48 expression inhibited forskolin induced tyrosine phosphorylation of C3G and neurite outgrowth in IMR-32 cells. Our results identify a novel Golgi localized substrate of TC48 and delineate a role for TC48 in dephosphorylation of substrates required during differentiation of human neuroblastoma cells.  相似文献   
157.
We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.  相似文献   
158.
159.
Solid state circular dichroism (c.d.) and infrared (i.r.) studies of water soluble and insoluble fractions of poly(hydroxyethylglutamine-valine) random copolymers, prepared from parent γ-benzyl l-glutamate valine copolymers, show that interchain conformational heterogeneity with interchain compositional heterogeneity is present when the respective N-carboxyanhydrides are copolymerized in dioxan or benzene/methylene chloride. Use of previously determined reactivity ratios for the aforementioned copolymer systems permits the determination of the variation of the average copolymer composition, fG, with conversion. The experimentally determined average copolymer composition.fG for the use of the respective reactivity ratios and the copolymer hydroxyethylglutamine, valine are predicted by the use of the respective reactivity ratios and the copolymer composition equation. As the valine content of the copolymer chains in the fractions increases, the expected increase in β-sheet contribution is seen. Comparison of the experimentally determined solid state c.d. spectra with Greenfield and Fasman's computer generated c.d. spectra for varying amounts of α-helix, β-sheet and random structures, shows that the water insoluble fractions with their increased valine contents have a greater contribution of β-sheet structure than the respective soluble fractions.  相似文献   
160.
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号