首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   6篇
  181篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   12篇
  2013年   13篇
  2012年   15篇
  2011年   21篇
  2010年   9篇
  2009年   12篇
  2008年   16篇
  2007年   6篇
  2006年   10篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  1998年   2篇
  1993年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有181条查询结果,搜索用时 0 毫秒
71.
72.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.  相似文献   
73.
The molecular basis of the ability of bacteria to live on caffeine via the C-8 oxidation pathway is unknown. The first step of this pathway, caffeine to trimethyluric acid (TMU), has been attributed to poorly characterized caffeine oxidases and a novel quinone-dependent caffeine dehydrogenase. Here, we report the detailed characterization of the second enzyme, a novel NADH-dependent trimethyluric acid monooxygenase (TmuM), a flavoprotein that catalyzes the conversion of TMU to 1,3,7-trimethyl-5-hydroxyisourate (TM-HIU). This product spontaneously decomposes to racemic 3,6,8-trimethylallantoin (TMA). TmuM prefers trimethyluric acids and, to a lesser extent, dimethyluric acids as substrates, but it exhibits no activity on uric acid. Homology models of TmuM against uric acid oxidase HpxO (which catalyzes uric acid to 5-hydroxyisourate) reveal a much bigger and hydrophobic cavity to accommodate the larger substrates. Genes involved in the caffeine C-8 oxidation pathway are located in a 25.2-kb genomic DNA fragment of CBB1, including cdhABC (coding for caffeine dehydrogenase) and tmuM (coding for TmuM). Comparison of this gene cluster to the uric acid-metabolizing gene cluster and pathway of Klebsiella pneumoniae revealed two major open reading frames coding for the conversion of TM-HIU to S-(+)-trimethylallantoin [S-(+)-TMA]. The first one, designated tmuH, codes for a putative TM-HIU hydrolase, which catalyzes the conversion of TM-HIU to 3,6,8-trimethyl-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (TM-OHCU). The second one, designated tmuD, codes for a putative TM-OHCU decarboxylase which catalyzes the conversion of TM-OHCU to S-(+)-TMA. Based on a combination of enzymology and gene-analysis, a new degradative pathway for caffeine has been proposed via TMU, TM-HIU, TM-OHCU to S-(+)-TMA.  相似文献   
74.
DNA repair mechanisms are essential for the maintenance of genomic stability, proper cellular function and survival for all organisms. Plants, with their intrinsic immobility, are vastly exposed to a wide range of environmental agents and also endogenous processes which frequently cause damage to DNA and impose genotoxic stress. Therefore, in order to survive under frequent and extreme environmental stress conditions, plants have developed a vast array of efficient and powerful DNA damage repair mechanisms to ensure rapid and precise repair of genetic material for maintaining genome stability and faithful transfer of genetic information over generations.1 Recently, we have defined the role of DNA polymerase λ in repair of UV-B-induced photoproducts in Arabidopsis thaliana via nucleotide excision repair pathway.2 Here, we have further discussed potential function of DNA polymerase λ in various DNA repair pathways in higher plant genome in response to environmental and genotoxic stress factors.  相似文献   
75.
Biliary atresia (BA) is a devastating disease of childhood for which increasing evidence supports a viral component in pathogenesis. The murine model of BA is induced by perinatal infection with rhesus rotavirus (RRV) but not with other strains of rotavirus, such as TUCH. To determine which RRV gene segment(s) is responsible for pathogenesis, we used the RRV and TUCH strains to generate a complete set of single-gene reassortants. Eleven single-gene "loss-of-function" reassortants in which a TUCH gene replaced its RRV equivalent and 11 single-gene "gain-of-function" reassortants in which an RRV gene replaced its TUCH equivalent were generated. Newborn BALB/c mice were inoculated with the reassortants and were monitored for biliary obstruction and mortality. In vitro, the ability to bind to and replicate within cholangiocytes was analyzed. Infection of mice with the "loss-of-function" reassortant R(T(VP4)), where gene 4 from TUCH was placed on an RRV background, eliminated the ability of RRV to cause murine BA. In a reciprocal fashion, the "gain-of-function" reassortant T(R(VP4)) resulted in murine BA with 88% mortality. Compared with those for RRV, R(T(VP4)) binding and titers in cholangiocytes were significantly attenuated, while T(R(VP4)) binding and titers were significantly increased over those for TUCH. Reassortants R(T(VP3)) and T(R(VP3)) induced an intermediate phenotype. RRV gene segment 4 plays a significant role in governing tropism for the cholangiocyte and the ability to induce murine BA. Gene segment 3 did not affect RRV infectivity in vitro but altered its in vivo effect.  相似文献   
76.
Molecular Biology Reports - Marine algae are an auspicious source of innovative bioactive compounds containing possible therapeutic agents against mammalian cancers. However, the mechanism by which...  相似文献   
77.
78.

Objective

To determine the feasibility and case detection rate of a geographic information systems (GIS)-based integrated community screening strategy for tuberculosis, syphilis, and human immunodeficiency virus (HIV).

Design

Prospective cross-sectional study of all participants presenting to geographic hot spot screenings in Wake County, North Carolina.

Methods

The residences of tuberculosis, HIV, and syphilis cases incident between 1/1/05–12/31/07 were mapped. Areas with high densities of all 3 diseases were designated “hot spots.” Combined screening for tuberculosis, HIV, and syphilis were conducted at the hot spots; participants with positive tests were referred to the health department.

Results and Conclusions

Participants (N = 247) reported high-risk characteristics: 67% previously incarcerated, 40% had lived in a homeless shelter, and 29% had a history of crack cocaine use. However, 34% reported never having been tested for HIV, and 41% did not recall prior tuberculin skin testing. Screening identified 3% (8/240) of participants with HIV infection, 1% (3/239) with untreated syphilis, and 15% (36/234) with latent tuberculosis infection. Of the eight persons with HIV, one was newly diagnosed and co-infected with latent tuberculosis; he was treated for latent TB and linked to an HIV provider. Two other HIV-positive persons had fallen out of care, and as a result of the study were linked back into HIV clinics. Of 27 persons with latent tuberculosis offered therapy, nine initiated and three completed treatment. GIS-based screening can effectively penetrate populations with high disease burden and poor healthcare access. Linkage to care remains challenging and will require creative interventions to impact morbidity.  相似文献   
79.
80.
Enhanced yields of different lignocellulases were obtained under statistically-optimized parameters using Pholiota adiposa. The k (cat) value (4,261 s(-1)) of purified xylanase under standard assay conditions was the highest value ever reported. On covalent immobilization of the crude xylanase preparation onto functionalized silicon oxide nanoparticles, 66 % of the loaded enzyme was retained on the particle. Immobilized enzyme gave 45 % higher concentrations of xylooligosaccharides compared to the free enzyme. After 17 cycles, the immobilized enzyme retained 97 % of the original activity, demonstrating its prospects for the synthesis of xylooligosaccharides in industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号