首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   929篇
  免费   52篇
  981篇
  2023年   4篇
  2022年   15篇
  2021年   14篇
  2020年   14篇
  2019年   13篇
  2018年   18篇
  2017年   14篇
  2016年   34篇
  2015年   32篇
  2014年   59篇
  2013年   52篇
  2012年   68篇
  2011年   56篇
  2010年   47篇
  2009年   42篇
  2008年   45篇
  2007年   41篇
  2006年   35篇
  2005年   35篇
  2004年   49篇
  2003年   46篇
  2002年   29篇
  2001年   17篇
  2000年   17篇
  1999年   17篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   10篇
  1994年   6篇
  1993年   16篇
  1992年   10篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   12篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1979年   3篇
  1977年   2篇
  1976年   4篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1970年   2篇
  1963年   2篇
排序方式: 共有981条查询结果,搜索用时 15 毫秒
31.
In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) calli were cultured on media containing NaCl or polyethylene glycol (PEG) 8000 that exerted the same osmotic pressure (−0.7 MPa). PEG stress exposure for 15 days led to significant growth reduction and loss in water content than salt stressed and control tissues. Osmotic adjustment (OA) was observed in callus tissues grown on salt, but was not evident in callus grown on PEG. Oxidative damage to membranes, estimated in terms of accumulation of thiobarbituric acid reactive substances-TBARS and electrolytic leakage was significantly higher in both the stressed calli than the control however, the extent of damage was more in the PEG stressed calli. The stressed callus tissues showed inhibition of ascorbate peroxidase activity, while catalase activity was increased. These results indicate sensitivity of cells to PEG-mediated stress than salt stress and differences in their OA to these two stress conditions. The sensitivity to the osmotic stress indicate that expression of the stress tolerance response requires the coordinated action of different tissues in a plant and hence was not expressed at the cellular level.  相似文献   
32.
33.
Accumulation and retention of regulatory T-cells (Tregs) has been reported within post viral-encephalitic brains, however, the full extent to which these cells modulate neuroinflammation is yet to be elucidated. Here, we used Foxp3-DTR (diphtheria toxin receptor) knock-in transgenic mice, which upon administration of low dose diphtheria toxin (DTx) results in specific deletion of Tregs. We investigated the proliferation status of various immune cell subtypes within inflamed central nervous system (CNS) tissue. Depletion of Tregs resulted in increased proliferation of both CD8+ and CD4+ T-cell subsets within the brain at 14 d post infection (dpi) when compared to Treg-sufficient animals. At 30 dpi, while proliferation of CD8+ T-cells was controlled within brains of both Treg-depleted and undepleted mice, proliferation of CD4+ T-cells remained significantly enhanced with DTx-treatment. Previous studies have demonstrated that Treg numbers within the brain rebound following DTx treatment to even higher numbers than in untreated animals. Despite this rebound, CD8+ and CD4+ T-cells proliferated at a higher rate when compared to that of Treg-sufficient mice, thus maintaining sustained neuroinflammation. Furthermore, at 30 dpi we found the majority of CD8+ T-cells were CD127hi KLRG1- indicating that the cells were long lived memory precursor cells. These cells showed marked elevation of CD103 expression, a marker of tissue resident-memory T-cells (TRM) in the CNS, in untreated animals when compared to DTx-treated animals suggesting that generation of TRM is impaired upon Treg depletion. Moreover, the effector function of TRM as indicated by granzyme B production in response to peptide re-stimulation was found to be more potent in Treg-sufficient animals. Taken together, our findings demonstrate that Tregs limit neuroinflammatory responses to viral infection by controlling cell proliferation and may direct a larger proportion of lymphocytes within the brain to be maintained as TRM cells.  相似文献   
34.

Background  

Industrial fermentation typically uses complex nitrogen substrates which consist of mixture of amino acids. The uptake of amino acids is known to be mediated by several amino acid transporters with certain preferences. However, models to predict this preferential uptake are not available. We present the stoichiometry for the utilization of amino acids as a sole carbon and nitrogen substrate or along with glucose as an additional carbon source. In the former case, the excess nitrogen provided by the amino acids is excreted by the organism in the form of ammonia. We have developed a cybernetic model to predict the sequence and kinetics of uptake of amino acids. The model is based on the assumption that the growth on a specific substrate is dependent on key enzyme(s) responsible for the uptake and assimilation of the substrates. These enzymes may be regulated by mechanisms of nitrogen catabolite repression. The model hypothesizes that the organism is an optimal strategist and invests resources for the uptake of a substrate that are proportional to the returns.  相似文献   
35.
Pillai BR  Mohanty J 《Cryobiology》2003,47(3):242-246
A new, safe, and rapid technique for the individual separation of the embryos of giant freshwater prawn Macrobrachium rosenbergii de Man is described. Two protease enzymes, e.g., trypsin and collagenase were used. Embryos in the advanced stage of development (gray embryos with eyespot and heart beat) were selected for the study. Treatment with collagenase and trypsin at respective concentrations of 0.05 and 0.25% for 30 min resulted in 100% separation of 35-40 mg of embryonic mass (approximately 180 embryos). A chelating agent, EDTA (ethylenediaminetetraacetic acid disodium salt: dihydrate) at 400 mg l(-1) enhanced the activity of trypsin. Trypsin and collagenase, when used together, were found to act synergistically. The separated embryos revealed no morphological injury when observed under the microscope. Further, in vitro hatching of the separated embryos was successful indicating that the present technique is safe and effective in achieving individual separation of prawn embryos.  相似文献   
36.
Aging is a major risk factor of intervertebral disc degeneration and a leading cause of back pain. Pathological changes associated with disc degeneration include the absence of large, vacuolated and reticular‐shaped nucleus pulposus cells, and appearance of smaller cells nested in lacunae. These small nested cells are conventionally described as chondrocyte‐like cells; however, their origin in the intervertebral disc is unknown. Here, using a genetic mouse model and a fate mapping strategy, we have found that the chondrocyte‐like cells in degenerating intervertebral discs are, in fact, nucleus pulposus cells. With aging, the nucleus pulposus cells fuse their cell membranes to form the nested lacunae. Next, we characterized the expression of sonic hedgehog (SHH), crucial for the maintenance of nucleus pulposus cells, and found that as intervertebral discs age and degenerate, expression of SHH and its target Brachyury is gradually lost. The results indicate that the chondrocyte‐like phenotype represents a terminal stage of differentiation preceding loss of nucleus pulposus cells and disc collapse.  相似文献   
37.
38.
In mammalian cells Cdk2 activity during the G(1)-S transition is mainly controlled by p27(KIP1). Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21(CIP1)-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6.  相似文献   
39.
The dark-relaxation kinetics of variable fluorescence, Fv, in intact green leaves of Pisum stativum L. and Dolichos lablab L. were analyzed using modulated fluorometers. Fast (t1/2 = 1 s) and slow (t1/2 = 7–8 s) phases in fv dark-decay kinetics were observed; the rate and the relative contribution of each phase in total relaxation depended upon the fluence rate of the actinic light and the point in the induction curve at which the actinic light was switched off. The rate of the slow phase was accelerated markedly by illumination with far-red light; the slow phase was abolished by methyl viologen. The halftime of the fast phase of Fv dark decay decreased from 250 ms in dark-adapted leaves to 12–15 ms upon adaptation to red light which is absorbed by PSII. The analysis of the effect of far-red light, which is absorbed mainly by PSI, on Fv dark decay indicates that the slow phase develops when a fraction of QA (the primary stable electron acceptor of PSII) cannot transfer electrons to PSI because of limitation on the availability of P700+ (the primary electron donor of PSI). After prolonged illumination of dark-adapted leaves in red (PSII-absorbed) light, a transient. Fv rise appears which is prevented by far-red (PSI-absorbed) light. This transient fv rise reflects the accumulation of QA in the dark. The observation of this transient Fv rise even in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone (CCCP) indicates that a mechanism other than ATP-driven back-transfer of electrons to QA may be responsible for the phenomenon. It is suggested that the fast phase in Fv dark-decay kinetics represents the reoxidation of QA by the electron-transport chain to PSI, whereas the slow phase is likely to be related to the interaction of QA with the donor side of PSII.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - FO initial fluorescence level - Fv variable fluorescence - P700 primary electron donor of PSI - PSI, II photosystem I, II - QA (QA ) QB (QB ) primary and secondary stable electron acceptor of PSII in oxidized (reduced) state Supported by grant B6.1/88 DST, Govt. of India.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号