Transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt), often referred to as Bt cotton, is widely grown in many countries. Bt cotton with a single cry1A gene and stacked also with cry2A gene has provided satisfactory protection against the damage by the lepidopteran bollworms, especially the cotton bollworm, Helicoverpa armigera (Hübner) which is considered as a key pest. The baseline susceptibility of the larvae of H. armigera to Cry1Ac and other toxins carried out in many countries has provided a basis for monitoring resistance. There is no evidence of development of field-level resistance in H. armigera leading to the failure of Bt cotton crop anywhere in the world, despite the fact that Bt cotton was grown on the largest ever area of 12.1 million hectares in 2006 and its cumulative cultivation over the last 11 years has surpassed the annual cotton area in the world. Nevertheless, the Bt resistance management has become a necessity to sustain Bt cotton and other transgenic crops in view of potential of the target insects to evolve Cry toxin resistance. 相似文献
Immunohistochemical localization of sulphydryloxidase was examined in the testis of the Djungarian hamster from Day 0 to Day 31 of post-natal development. The sulphydryloxidase antibody labelled prespermatogonia and the first population of spermatogonia type A within the seminiferous epithelium. Additionally, Sertoli cells exhibited immunoreactivity from Day 2 to Day 11 after birth. From Day 11 onwards, sulphydryloxidase immunoreactivity was found in germ cells after the initiation spermatogenesis from pachytene primary spermatocytes, showing the highest intensity in mid-pachytene spermatocytes. The pattern of sulphydryloxidase expression during spermatogenesis was identical to that found in adult animals. It is concluded that sulphydryloxidase immunoreactivity not only serves as a marker for early stages of spermatogenesis, especially pachytene spermatocytes, confirming earlier reports, but also for spermatogonial precursors. 相似文献
Farnesyl pyrophosphate synthase (FPS; EC 2.5.1.10) is a key enzyme in isoprenoid biosynthetic pathway and provides precursors
for the biosynthesis of various pharmaceutically important metabolites. It catalyzes head to tail condensation of two isopentenyl
pyrophosphate molecules with dimethylallyl pyrophosphate to form C15 compound farnesyl pyrophosphate. Recent studies have
confirmed FPS as a molecular target of bisphosphonates for drug development against bone diseases as well as pathogens.
Although large numbers of FPSs from different sources are known, very few protein structures have been reported till date. In the
present study, FPS gene from medicinal plant Bacopa monniera (BmFPS) was characterized by comparative modeling and docking.
Multiple sequence alignment showed two highly conserved aspartate rich motifs FARM and SARM (DDXXD). The 3-D model of
BmFPS was generated based on structurally resolved FPS crystal information of Gallus gallus. The generated models were validated
by various bioinformatics tools and the final model contained only α-helices and coils. Further, docking studies of modeled BmFPS
with substrates and inhibitors were performed to understand the protein ligand interactions. The two Asp residues from FARM
(Asp100 and Asp104) as well as Asp171, Lys197 and Lys262 were found to be important for catalytic activity. Interaction of
nitrogen containing bisphosphonates (risedronate, alendronate, zoledronate and pamidronate) with modeled BmFPS showed
competitive inhibition; where, apart from Asp (100, 104 and 171), Thr175 played an important role. The results presented here
could be useful for designing of mutants for isoprenoid biosynthetic pathway engineering well as more effective drugs against
osteoporosis and human pathogens.
Abbreviations
IPP - Isopentenyl Pyrophosphate,
DMAPP - Dimethylallyl Pyrophosphate,
GPP - Geranyl Pyrophosphate,
FPP - FPPFarnesyl Pyrophosphate,
DOPE - Discrete Optimized Protein Energy,
BmFPS - Bacopa monniera Farnesyl Pyrophosphate Synthase,
RMSD - Root Mean square Deviation,
OPLS-AA - Optimized Potentials for Liquid Simulations- All Atom,
FARM - First Aspartate Rich Motif,
SARM - Second Aspartate Rich Motif. 相似文献
Tuberculosis still remains one of the most deadly infectious diseases. The emergence of drug resistant strains has fuelled
the quest for novel drugs and drug targets for its successful treatment. Thymidine monophosphate kinase (TMPK) lies at the
point where the salvage and de novo synthetic pathways meet in nucleotide synthesis. TMPK in M.tb has emerged as an attractive drug target since blocking it will affect both the pathways involved in the thymidine triphosphate
synthesis. Moreover, the unique differences at the active site of TMPK enzyme in M.tb and humans can be exploited for the development of ideal drug candidates. Based on a detailed evaluation of known inhibitors
and available three-dimensional structures of TMPK, several peptidic inhibitors were designed. In silico docking and selectivity analysis of these inhibitors with TMPK from M.tb and human was carried out to examine their differential binding at the active site. The designed tripeptide, Trp-Pro-Asp,
was found to be most selective for M.tb. The ADMET analysis of this peptide indicated that it is likely to be a drug candidate. The tripeptide so designed is a suitable
lead molecule for the development of novel TMPK inhibitors as anti-tubercular drugs. 相似文献
Modular polyketide synthases are large, multifunctional enzyme complexes that are involved in the biosynthesis of important polyketides. Recent studies have revolutionized our understanding of the linear organization of polyketide-synthase-gene clusters. They have provided crucial information on the initiation, elongation and termination of polyketide chains, and thus a rational basis for the generation of novel compounds. Combinatorial libraries have helped this field to move from a random approach to a more empirical phase. The large number of diverse analogs of antibiotics that are presently produced demonstrate the enormous potential of combinatorial biosynthesis. 相似文献
Shoot fly [Atherigona soccata (Rondani)] is a destructive pest of sorghum at the seedling stage and causes huge losses to grain yield and green fodder. The host-plant resistance mechanism is the best approach to reduce the attack of insects in plants. The damage parameters, morphophysiological traits, and biochemical metabolites had been investigated in the leaves and stem of contrasting sorghum genotypes, viz., resistant (IS18551, ICSV705, ICSV700), moderately resistant (PSC-4), and susceptible (SWARNA and SL-44) at 15 and 21 days after emergence (DAE) against shoot fly infestation. The resistant genotypes recorded lowest shoot fly oviposition and incidence (0.3–0.7 eggs plant−1 and 10–15%) than the susceptible genotypes (2.4–3.0 eggs plant−1 and 70–80%), respectively. The susceptible genotype SWARNA recorded 50% and 80% higher deadheart formation than the resistant genotype IS18551 at 15 and 21 DAE, respectively. Resistant genotypes exhibited higher trichome density at adaxial and abaxial part of leaf (118–145 and 106–131) with pink colored leaf sheath (scale 1.50–3.25), glossy leaves (scale1.00–1.25), and lower leaf surface wetness (scale1.25–2.00) compared with susceptible genotype with 49.3–73.3 and 25.3–64.0, scale 2.50–4.00, scale 2.75–3.50, and scale 3.25–4.25 for the respective parameters. Another defense response of sorghum toward the insect attack was modulation of plant metabolism. The infested genotypes responded to insect attack by upregulation of total soluble sugar, total phenol, prussic acid, and chlorophyll content by 1.2–2.1-fold, 1.5–2.0-fold, 1.2–1.3-fold, and 1.2–3.9-fold with more induction in susceptible genotypes at 21 DAE. On the whole, the present study indicates that morphophysiological and biochemical attributes contribute toward the resistance mechanism in sorghum against shoot fly infestation.
Streptomyces sp. GNDU 1 produced high levels of extra-cellular inulinase (0.552 IU/ml) after 24 h at pH 7.5, temperature 46 degrees C in the presence of 1% inulin. The optimum temperature and pH for enzyme activity were 60 degrees C and 5.5 respectively. Yeast extract as a nitrogen source was found to be most suitable one for inulinase production whereas ammonium ion was inhibitory to the enzymatic production. All these conditions make Streptomyces sp. GNDU 1, a potential candidate for industrial enzymatic production of fructose from inulin. 相似文献
Lysosomes function as a primary site for catabolism and cellular signaling. These organelles digest a variety of substrates received through endocytosis, secretion and autophagy with the help of resident acid hydrolases. Lysosomal enzymes are folded in the endoplasmic reticulum (ER) and trafficked to lysosomes via Golgi and endocytic routes. The inability of hydrolase trafficking due to mutations or mutations in its receptor or cofactor leads to cargo accumulation (storage) in lysosomes, resulting in lysosome storage disorder (LSD). In Gaucher disease (GD), the lysosomes accumulate glucosylceramide because of low β-glucocerebrosidase (β-GC) activity that causes lysosome enlargement/dysfunction. We hypothesize that improving the trafficking of mutant β-GC to lysosomes may improve the lysosome function in GD. RNAi screen using high throughput based β-GC activity assay followed by reporter trafficking assay utilizing β-GC-mCherry led to the identification of nine potential phosphatases. Depletion of these phosphatases in HeLa cells enhanced the β-GC activity by increasing the folding and trafficking of Gaucher mutants to the lysosomes. Consistently, the lysosomes in primary fibroblasts from GD patients restored their β-GC activity upon the knockdown of these phosphatases. Thus, these studies provide evidence that altering phosphatome activity is an alternative therapeutic strategy to restore the lysosome function in GD. 相似文献
A marine bacterial strain identified as Vibrio parahaemolyticus by 16S rRNA gene (HM355955) sequencing and gas chromatography (GC) coupled with MIDI was selected from a natural biofilm by its capability to produce extracellular polymeric substances (EPS). The EPS had an average molecule size of 15.278 μm and exhibited characteristic diffraction peaks at 5.985°, 9.150° and 22.823°, with d-spacings of 14.76661, 9.29989 and 3.89650 ?, respectively. The Fourier-transform infrared spectroscopy (FTIR) spectrum revealed aliphatic methyl, primary amine, halide groups, uronic acid and saccharides. Gas chromatography mass spectrometry (GCMS) confirmed the presence of arabinose, galactose, glucose and mannose. (1)HNMR (nuclear magnetic resonance) revealed functional groups characteristic of polysaccharides. The EPS were amorphous in nature (CI(xrd) 0.092), with a 67.37% emulsifying activity, thermostable up to 250°C and displayed pseudoplastic rheology. MALDI-TOF-TOF analysis revealed a series of masses, exhibiting low-mass peaks (m/z) corresponding to oligosaccharides and higher-mass peaks for polysaccharides consisting of different ratios of pentose and hexose moieties. This is the first report of a detailed characterisation of the EPS produced by V. parahaemolyticus, which could be further explored for biotechnological and industrial use. 相似文献