首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9138篇
  免费   689篇
  国内免费   768篇
  10595篇
  2024年   18篇
  2023年   127篇
  2022年   293篇
  2021年   503篇
  2020年   307篇
  2019年   438篇
  2018年   399篇
  2017年   251篇
  2016年   425篇
  2015年   588篇
  2014年   696篇
  2013年   784篇
  2012年   882篇
  2011年   760篇
  2010年   436篇
  2009年   432篇
  2008年   454篇
  2007年   396篇
  2006年   357篇
  2005年   257篇
  2004年   248篇
  2003年   202篇
  2002年   148篇
  2001年   133篇
  2000年   121篇
  1999年   102篇
  1998年   100篇
  1997年   91篇
  1996年   83篇
  1995年   71篇
  1994年   64篇
  1993年   46篇
  1992年   78篇
  1991年   47篇
  1990年   33篇
  1989年   37篇
  1988年   22篇
  1987年   25篇
  1986年   25篇
  1985年   24篇
  1984年   11篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
C Gao  M Xiao  X Ren  A Hayward  J Yin  L Wu  D Fu  J Li 《Genomics》2012,100(4):222-230
The movement of transposable elements (TE) in eukaryotic genomes can often result in the occurrence of nested TEs (the insertion of TEs into pre-existing TEs). We performed a general TE assessment using available databases to detect nested TEs and analyze their characteristics and putative functions in eukaryote genomes. A total of 802 TEs were found to be inserted into 690 host TEs from a total number of 11,329 TEs. We reveal that repetitive sequences are associated with an increased occurrence of nested TEs and sequence biased of TE insertion. A high proportion of the genes which were associated with nested TEs are predicted to localize to organelles and participate in nucleic acid and protein binding. Many of these function in metabolic processes, and encode important enzymes for transposition and integration. Therefore, nested TEs in eukaryotic genomes may negatively influence genome expansion, and enrich the diversity of gene expression or regulation.  相似文献   
992.
993.
We tested the hypothesis that reactive oxygen species (ROS) contributed to renal hypoxia in C57BL/6 mice with ⅚ surgical reduction of renal mass (RRM). ROS can activate the mitochondrial uncoupling protein 2 (UCP-2) and increase O(2) usage. However, UCP-2 can be inactivated by glutathionylation. Mice were fed normal (NS)- or high-salt (HS) diets, and HS mice received the antioxidant drug tempol or vehicle for 3 mo. Since salt intake did not affect the tubular Na(+) transport per O(2) consumed (T(Na/)Q(O2)), further studies were confined to HS mice. RRM mice had increased excretion of 8-isoprostane F(2α) and H(2)O(2), renal expression of UCP-2 and renal O(2) extraction, and reduced T(Na/)Q(O2) (sham: 20 ± 2 vs. RRM: 10 ± 1 μmol/μmol; P < 0.05) and cortical Po(2) (sham: 43 ± 2, RRM: 29 ± 2 mmHg; P < 0.02). Tempol normalized all these parameters while further increasing compensatory renal growth and glomerular volume. RRM mice had preserved blood pressure, glomeruli, and patchy tubulointerstitial fibrosis. The patterns of protein expression in the renal cortex suggested that RRM kidneys had increased ROS from upregulated p22(phox), NOX-2, and -4 and that ROS-dependent increases in UCP-2 led to hypoxia that activated transforming growth factor-β whereas erythroid-related factor 2 (Nrf-2), glutathione peroxidase-1, and glutathione-S-transferase mu-1 were upregulated independently of ROS. We conclude that RRM activated distinct processes: a ROS-dependent activation of UCP-2 leading to inefficient renal O(2) usage and cortical hypoxia that was offset by Nrf-2-dependent glutathionylation. Thus hypoxia in RRM may be the outcome of NADPH oxidase-initiated ROS generation, leading to mitochondrial uncoupling counteracted by defense pathways coordinated by Nrf-2.  相似文献   
994.
Xu Y  Zhang Y  Guo Z  Yin H  Zeng K  Wang L  Luo J  Zhu Q  Wu L  Zhang X  Chen D 《Neurochemical research》2012,37(3):665-670
Recent studies suggest that angiogenesis and vascular endothelial growth factor (VEGF) are involved in the pathophysiology of epilepsy. However, relatively little data are available linking placenta growth factor (PIGF) with epilepsy. In this study, we assessed concentrations of PIGF in cerebrospinal fluid (CSF) of 60 epileptic patients and 24 non-seizure subjects using sandwich enzyme-linked immunosorbent assays. Epileptic patients in general had higher concentration of CSF-PIGF than controls (7.95 ± 0.88 ng/l vs. 5.87 ± 0.79 ng/l, P < 0.01). CSF-PIGF level in secondary epileptic patients (8.59 ± 1.26 ng/l) was higher than that in idiopathic epileptic patients (7.62 ± 0.20 ng/l) (P < 0.05). In idiopathic epilepsy, CSF-PIGF level in patients with high seizure frequency was higher than those in patients with low seizure frequency and seizure-free in recent 3 years (7.78 ± 0.23 ng/l vs. 7.49 ± 0.09 ng/l and 7.59 ± 0.10 ng/l, P < 0.05). Concentration of CSF-PIGF in patients with a disease duration of > 5 years was higher than those in patients with durations of 1-5 years and <1 year (7.72 ± 0.20 ng/l vs. 7.52 ± 0.09 ng/l and 7.41 ± 0.07 ng/l, P < 0.05). These results indicate that preexisting brain damage, seizure frequency and disease duration are important factors contributing to elevated PIGF.  相似文献   
995.
Huang C  Yang YF  Yin N  Chen JL  Wang J  Zhang H  Tan ZP 《Gene》2012,498(2):308-310
13q deletion syndrome is a rare genetic disorder caused by deletions of the long arm of chromosome 13. Patients with 13q deletion display a variety of phenotypic features. We describe a one-year-old female patient with congenital heart defects (CHD), facial anomalies, development and mental retardation. We identified a 12.75Mb deletion in chromosome region 13q33.1-34 with high resolution SNP Array (Human660W-Quad, Illumina, USA). This chromosome region contains about 55 genes, including EFNB2, ERCC5, VGCNL1, F7, and F10. Comparing our findings with previously reported 13q deletion patients with congenital heart defects, we propose that the 13q33.1-34 deletion region might contain key gene(s) associated with cardiac development. Our study also identified a subclinical deficiency of Factors VII and X in our patient with Group 3 of 13q deletion syndrome.  相似文献   
996.
Mitochondria undergo dynamic structural alterations to meet changing needs and to maintain homeostasis. We report here a novel mitochondrial structure. Conventional transmission electron microscopic examination of murine embryonic fibroblasts treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, found that more than half of the mitochondria presented a ring-shaped or C-shaped morphology. Many of these mitochondria seemed to have engulfed various cytosolic components. Serial sections through individual mitochondria indicated that they formed a ball-like structure with an internal lumen surrounded by the membranes and containing cytosolic materials. Notably, the lumen was connected to the external cytoplasm through a small opening. Electron tomographic reconstruction of the mitochondrial spheroids demonstrated the membrane topology and confirmed the vesicular configuration of this mitochondrial structure. The outside periphery and the lumen were defined by the outer membranes, which were lined with the inner membranes. Matrix and cristae were retained but distributed unevenly with less being kept near the luminal opening. Mitochondrial spheroids seem to form in response to oxidative mitochondrial damage independently of mitophagy. The structural features of the mitochondrial spheroids thus represent a novel mitochondrial dynamics.  相似文献   
997.
To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO(2) to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g (s)), mesophyll conductance (g (m)), electron transport capacity (J (max)), and Rubisco carboxylation capacity (V (cmax)). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g (s) and g (m). One previously mapped major QTL of photosynthesis was associated with variation in g (s) and g (m), but also in J (max) and V (cmax) at flowering. Thus, g (s) and g (m), which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background.  相似文献   
998.
Zhou F  Yin Y  Su T  Yu L  Yu CA 《Biochimica et biophysica acta》2012,1817(12):2103-2109
The effect of molecular oxygen on the electron transfer activity of the cytochrome bc(1) complex was investigated by determining the activity of the complex under the aerobic and anaerobic conditions. Molecular oxygen increases the activity of Rhodobacter sphaeroides bc(1) complex up to 82%, depending on the intactness of the complex. Since oxygen enhances the reduction rate of heme b(L), but shows no effect on the reduction rate of heme b(H), the effect of oxygen in the electron transfer sequence of the cytochrome bc(1) complex is at the step of heme b(L) reduction during bifurcated oxidation of ubiquinol.  相似文献   
999.
1000.
Cationic antimicrobial peptides (CAPs) occur as important innate immunity agents in many organisms, including humans, and offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to membrane lysis and eventually cell death. In this work, we studied the biophysical and microbiological characteristics of designed CAPs varying in hydrophobicity levels and charge distributions by a variety of biophysical and biochemical approaches, including in-tandem atomic force microscopy, attenuated total reflection-FTIR, CD spectroscopy, and SDS-PAGE. Peptide structural properties were correlated with their membrane-disruptive abilities and antimicrobial activities. In bacterial lipid model membranes, a time-dependent increase in aggregated β-strand-type structure in CAPs with relatively high hydrophobicity (such as KKKKKKALFALWLAFLA-NH(2)) was essentially absent in CAPs with lower hydrophobicity (such as KKKKKKAAFAAWAAFAA-NH(2)). Redistribution of positive charges by placing three Lys residues at both termini while maintaining identical sequences minimized self-aggregation above the dimer level. Peptides containing four Leu residues were destructive to mammalian model membranes, whereas those with corresponding Ala residues were not. This finding was mirrored in hemolysis studies in human erythrocytes, where Ala-only peptides displayed virtually no hemolysis up to 320 μM, but the four-Leu peptides induced 40-80% hemolysis at the same concentration range. All peptides studied displayed strong antimicrobial activity against Pseudomonas aeruginosa (minimum inhibitory concentrations of 4-32 μM). The overall findings suggest optimum routes to balancing peptide hydrophobicity and charge distribution that allow efficient penetration and disruption of the bacterial membranes without damage to mammalian (host) membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号