首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5988篇
  免费   561篇
  国内免费   2篇
  2023年   12篇
  2022年   33篇
  2021年   98篇
  2020年   84篇
  2019年   113篇
  2018年   171篇
  2017年   150篇
  2016年   224篇
  2015年   308篇
  2014年   385篇
  2013年   396篇
  2012年   581篇
  2011年   473篇
  2010年   337篇
  2009年   290篇
  2008年   409篇
  2007年   401篇
  2006年   375篇
  2005年   286篇
  2004年   284篇
  2003年   262篇
  2002年   176篇
  2001年   104篇
  2000年   87篇
  1999年   63篇
  1998年   44篇
  1997年   35篇
  1996年   24篇
  1995年   23篇
  1994年   23篇
  1993年   8篇
  1992年   30篇
  1991年   22篇
  1990年   25篇
  1989年   19篇
  1988年   25篇
  1987年   14篇
  1986年   17篇
  1985年   14篇
  1984年   13篇
  1983年   12篇
  1982年   11篇
  1981年   15篇
  1980年   8篇
  1979年   6篇
  1978年   7篇
  1976年   5篇
  1973年   6篇
  1972年   8篇
  1965年   4篇
排序方式: 共有6551条查询结果,搜索用时 15 毫秒
61.
Allyl isothiocyanate (AITC) is a phytochemical found in cruciferous vegetables that has known chemopreventive and chemotherapeutic activities. Thus far, the antiangiogenic activity of AITC has not been reported in in vivo studies. Herein, we investigated the effect of AITC on angiogenesis and inflammation in a mouse model of colitis. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium via drinking water. To monitor the activity of AITC in this model, we measured body weight, disease activity indices, histopathological scores, microvascular density, myeloperoxidase activity, F4/80 staining, inducible nitric oxide synthase (iNOS) expression, cyclooxygenase-2 (COX-2) expression, and vascular endothelial growth factor (VEGF)-A/VEGF receptor 2 (VEGFR2) expression in the mice. We found that AITC-treated mice showed less weight loss, fewer clinical signs of colitis, and longer colons than vehicle-treated mice. AITC treatment also significantly lessened the disruption of colonic architecture that is normally associated with colitis and repressed the microvascularization response. Further, AITC treatment reduced both leukocyte recruitment and macrophage infiltration into the inflamed colon, and the mechanism these activities involved repressing iNOS and COX-2 expression. Finally, AITC attenuated the expression of VEGF-A and VEGFR2. Thus, AITC may have potential application in treating conditions marked by inflammatory-driven angiogenesis and mucosal inflammation.  相似文献   
62.
Subdural cortical stimulation (SuCS) is a method used to inject electrical current through electrodes beneath the dura mater, and is known to be useful in treating brain disorders. However, precisely how SuCS must be applied to yield the most effective results has rarely been investigated. For this purpose, we developed a three-dimensional computational model that represents an anatomically realistic brain model including an upper chest. With this computational model, we investigated the influence of stimulation amplitudes, electrode configurations (single or paddle-array), and white matter conductivities (isotropy or anisotropy). Further, the effects of stimulation were compared with two other computational models, including an anatomically realistic brain-only model and the simplified extruded slab model representing the precentral gyrus area. The results of voltage stimulation suggested that there was a synergistic effect with the paddle-array due to the use of multiple electrodes; however, a single electrode was more efficient with current stimulation. The conventional model (simplified extruded slab) far overestimated the effects of stimulation with both voltage and current by comparison to our proposed realistic upper body model. However, the realistic upper body and full brain-only models demonstrated similar stimulation effects. In our investigation of the influence of anisotropic conductivity, model with a fixed ratio (1∶10) anisotropic conductivity yielded deeper penetration depths and larger extents of stimulation than others. However, isotropic and anisotropic models with fixed ratios (1∶2, 1∶5) yielded similar stimulation effects. Lastly, whether the reference electrode was located on the right or left chest had no substantial effects on stimulation.  相似文献   
63.
64.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   
65.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
66.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
67.
For efficient catalysis and electrocatalysis well‐designed, high‐surface‐area support architectures covered with highly dispersed metal nanoparticles with good catalyst‐support interactions are required. In situ grown Ni nanoparticles on perovskites have been recently reported to enhance catalytic activities in high‐temperature systems such as solid oxide cells (SOCs). However, the micrometer‐scale primary particles prepared by conventional solid‐state reactions have limited surface area and tend to retain much of the active catalytic element within the bulk, limiting efficacy of such exsolution processes in low‐temperature systems. Here, a new, highly efficient, solvothermal route is demonstrated to exsolution from smaller scale primary particles. Furthermore, unlike previous reports of B‐site exsolution, it seems that the metal nanoparticles are exsolved from the A‐site of these perovskites. The catalysts show large active site areas and strong metal‐support interaction (SMSI), leading to ≈26% higher geometric activity (25 times higher mass activity with 1.4 V of Eon‐set) and stability for oxygen‐evolution reaction (OER) with only 0.72 µg base metal contents compared to typical 20 wt% Ni/C and even commercial 20 wt% Ir/C. The findings obtained here demonstrate the potential design and development of heterogeneous catalysts in various low‐temperature electrochemical systems including alkaline fuel cells and metal–air batteries.  相似文献   
68.
Despite their high theoretical energy density and low cost, lithium–sulfur batteries (LSBs) suffer from poor cycle life and low energy efficiency owing to the polysulfides shuttle and the electronic insulating nature of sulfur. Conductivity and polarity are two critical parameters for the search of optimal sulfur host materials. However, their role in immobilizing polysulfides and enhancing redox kinetics for long‐life LSBs are not fully understood. This work has conducted an evaluation on the role of polarity over conductivity by using a polar but nonconductive platelet ordered mesoporous silica (pOMS) and its replica platelet ordered mesoporous carbon (pOMC), which is conductive but nonpolar. It is found that the polar pOMS/S cathode with a sulfur mass fraction of 80 wt% demonstrates outstanding long‐term cycle stability for 2000 cycles even at a high current density of 2C. Furthermore, the pOMS/S cathode with a high sulfur loading of 6.5 mg cm?2 illustrates high areal and volumetric capacities with high capacity retention. Complementary physical and electrochemical probes clearly show that surface polarity and structure are more dominant factors for sulfur utilization efficiency and long‐life, while the conductivity can be compensated by the conductive agent involved as a required electrode material during electrode preparation. The present findings shed new light on the design principles of sulfur hosts towards long‐life and highly efficient LSBs.  相似文献   
69.
70.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号