首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   6篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   7篇
  2015年   6篇
  2014年   9篇
  2013年   12篇
  2012年   15篇
  2011年   7篇
  2010年   9篇
  2009年   4篇
  2008年   5篇
  2007年   9篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1995年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有129条查询结果,搜索用时 468 毫秒
71.
72.
73.
Brain is a target of stress along with the immune, metabolic, and cardiovascular systems of the body. In the present work, the preventive roles of a multivitamin–mineral supplement and vitamins (E + C) in chronic unpredictable stress (CUS)-induced oxidative damage were studied in the brain and heart of Swiss albino mice. Thirty-two mice were randomized to one of the following groups: control + vehicle, CUS + vehicle, CUS + multivitamin–mineral, and CUS + vitamins (E + C). CUS was applied for 4 weeks, and multivitamin–mineral and vitamins (E + C) were administered orally for the same period. CUS led to a negative impact on all the biochemical parameters analyzed. Elevation in malondialdehyde and reduction in glutathione levels were found. The activities of superoxide dismutase, catalase, glutathione S-transferase, and glutathione reductase were decreased. Treatment with multivitamin–mineral and vitamins (E + C) brought these parameters to near normal levels. Multivitamin–mineral was found more restitutive than combined vitamins (E + C) doses. The present study hypothesizes that supplementation with a multivitamin–mineral may prove more effective than vitamin treatment alone in the alleviation of oxidative damage in brain and heart during periods of chronic stress.  相似文献   
74.
75.
76.
This paper reports two studies to model the inter-relationships between protein sequence, structure and function. First, an automated pipeline to provide a structural annotation of proteomes in the major genomes is described. The results are stored in a database at Imperial College, London (3D-GENOMICS) that can be accessed at www.sbg.bio.ic.ac.uk. Analysis of the assignments to structural superfamilies provides evolutionary insights. 3D-GENOMICS is being integrated with related proteome annotation data at University College London and the European Bioinformatics Institute in a project known as e-protein (http://www.e-protein.org/). The second topic is motivated by the developments in structural genomics projects in which the structure of a protein is determined prior to knowledge of its function. We have developed a new approach PHUNCTIONER that uses the gene ontology (GO) classification to supervise the extraction of the sequence signal responsible for protein function from a structure-based sequence alignment. Using GO we can obtain profiles for a range of specificities described in the ontology. In the region of low sequence similarity (around 15%), our method is more accurate than assignment from the closest structural homologue. The method is also able to identify the specific residues associated with the function of the protein family.  相似文献   
77.
Alzheimer disease (AD) is a complex disorder that involves numerous cellular and subcellular alterations including impairments in mitochondrial homeostasis. To better understand the role of mitochondrial dysfunction in the pathogenesis of AD, we analyzed brains from clinically well-characterized human subjects and from the 3xTg-AD mouse model of AD. We find Aβ and critical components of the γ-secretase complex, presenilin-1, -2, and nicastrin, accumulate in the mitochondria. We used a proteomics approach to identify binding partners and show that heat shock protein 60 (HSP60), a molecular chaperone localized to mitochondria and the plasma membrane, specifically associates with APP. We next generated stable neural cell lines expressing human wild-type or Swedish APP, and provide corroborating in vitro evidence that HSP60 mediates translocation of APP to the mitochondria. Viral-mediated shRNA knockdown of HSP60 attenuates APP and Aβ mislocalization to the mitochondria. Our findings identify a novel interaction between APP and HSP60, which accounts for its translocation to the mitochondria.  相似文献   
78.
79.
80.
A major problem in assessing the vaccine and diagnostic potential of various proteins encoded by Mycobacterium tuberculosis genome is the inability to produce large quantities of these proteins, even when Escherichia coli or other heterologous systems are employed for recombinant protein production. To overcome these barriers, we have constructed a modified expression vector, using pGEX-4T-1 vector as the backbone. In addition to the features offered by the pGEX-4T vectors, the new vector allowed easy purification of recombinant proteins on the highly versatile Ni-NTA-agarose affinity matrix. The utility of the new vector was demonstrated by expressing and purifying, to near homogeneity, two M. tuberculosis proteins, i.e., Rv3872 (a member of the multi-gene PE subfamily) and Rv3873 (a member of the multi-gene PPE subfamily), which are encoded by the RD1 region of M. tuberculosis. The proteins encoded by rv3872 and rv3873 were expressed at high levels as fusion proteins with glutathione-S-transferase in E. coli. The recombinant Rv3872 and Rv3873 proteins were purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose and/or Ni-NTA-agarose affinity matrix and cleavage of the purified fusion proteins by thrombin protease. The recombinant Rv3872 protein was nearly homogeneous (more than 95% pure) while Rv3873 preparation was more than 90% pure. The recombinant Rv3872 and Rv3873 proteins were immunologically active and reacted with antibodies in sera from TB patients. Our results demonstrate the utility of the newly constructed expression vector with two affinity tags for efficient expression and purification of recombinant M. tuberculosis proteins expressed in E. coli, which could be used for further diagnostic and immunological studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号