首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   28篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   11篇
  2015年   12篇
  2014年   15篇
  2013年   19篇
  2012年   28篇
  2011年   19篇
  2010年   15篇
  2009年   10篇
  2008年   18篇
  2007年   10篇
  2006年   22篇
  2005年   15篇
  2004年   19篇
  2003年   19篇
  2002年   18篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   2篇
排序方式: 共有356条查询结果,搜索用时 15 毫秒
81.
82.
Calpain is a Ca2+-regulated cytosolic protease. Mammals have 14 calpain genes, half of which are predominantly expressed in specific organ(s); the rest are expressed ubiquitously. A defect in calpains causes lethality/pathogenicity, indicating their physiological indispensability. nCL-2/calpain-8a was identified as a stomach-specific calpain, whose physiological functions are unclear. To elucidate these, we characterized nCL-2 in detail. Unexpectedly, nCL-2 was localized strictly to the surface mucus cells in the gastric epithelium and the mucus-secreting goblet cells in the duodenum. Yeast two-hybrid screening identified several nCL-2-interacting molecules. Of these, the beta-subunit of coatomer complex (beta-COP) occurs in the stomach pit cells and is proteolyzed by nCL-2 in vitro. Furthermore, beta-COP and nCL-2 co-expressed in COS7 cells co-localized in the Golgi, and Ca2+-ionophore stimulation caused the proteolysis of beta-COP near the linker region, resulting in the dissociation of beta-COP from the Golgi. These results strongly suggest novel functions for nCL-2 that involve the membrane trafficking of mucus cells via interactions with coat protein.  相似文献   
83.
N-acetylglucosaminyltransferase (GnT)-IV catalyzes the formation of the GlcNAcβ1-4 branch on the GlcNAcβ1-2Manα1-3 arm of the core structure of N-glycans. Two human GnT-IV isozymes (GnT-IVa and GnT-IVb) had been identified, which exhibit different expression profiles among human tissues and cancer cell lines. To clarify the enzymatic properties of the respective enzymes, their kinetic parameters were determined using recombinant full-length enzymes expressed in COS7 cells. The K m of human GnT-IVb for UDP-GlcNAc was estimated to be 0.24 mM, which is 2-fold higher than that of human GnT-IVa. The K m values of GnT-IVb for pyridylaminated (PA) acceptor sugar chains with different branch numbers were 3- to 6-fold higher than those of GnT-IVa. To compare substrate specificities more precisely, we generated recombinant soluble enzymes of human GnT-IVa and GnT-IVb with N-terminal flag tags. Both enzymes showed similar substrate specificities as determined using fourteen PA-sugar chains. They preferred complex-type N-glycans over hybrid-types. Among the complex-type N-glycans tested, the relative activities of both enzymes were increased in proportion to the number of GlcNAc branches on the Man α1-6 arm. The Man α1-6 arm of the acceptors was not essential for their activities because a linear pentasaccharide lacking this arm, GlcNAcβ1-2Manα1-3Manβ1-4GlcNAcβ1-4 GlcNAc-PA, was a substrate for both enzymes. These results indicate that human GnT-IVb exhibits the same acceptor substrate specificities as human GnT-IVa, although GnT-IVb has lower affinities for donors or acceptors than GnT-IVa. This suggests that GnT-IVa is more active than GnT-IVb under physiological conditions and that it primarily contributes to the biosynthesis of N-glycans.  相似文献   
84.
85.
86.
Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.  相似文献   
87.

Background

Of all organs and tissues in adult mammals, the brain shows the most limited regeneration and recovery after injury. This is one reason why treating neurological damage such as ischemic injury after stroke presents such a challenge. Here we report a novel mode of regeneration which the slug''s cognitive center, the procerebrum, shows after surgical lesioning in the adult. It is well known that the land slug Limax possesses the capacity to demonstrate conditioned food aversion. This learning ability critically depends on the procerebrum, which is the higher olfactory center in the brain of the terrestrial mollusk.

Principal Findings

In the present study, after a 1-month recovery period post-surgical lesioning of the procerebrum we investigated whether the brain of the slug shows recovery from damage. We found that learning ability, local field potential oscillation, and the number of cells in the procerebrum (PC) all recovered spontaneously within 1 month of bilateral lesioning of the PC. Moreover, neurogenesis was enhanced in the lesioned PC. However, memory acquired before the surgery could not be retrieved 1 month after surgery although the procerebrum had recovered from injury by this time, consistent with the notion that the procerebrum is the storage site of odor-aversion memory, or deeply involved in the memory recall process.

Significance

Our findings are the first to demonstrate that a brain region responsible for the associative memory of an adult organism can spontaneously reconstitute itself, and can recover its function following injury.  相似文献   
88.

Background

Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR) 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88) is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD)-induced obesity.

Methodology/Principal Findings

In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP), which were linked to the onset of severe diabetes. On the other hand, TNF-α would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-α level was attenuated in MyD88-deficient mice fed with HFD.

Conclusions/Significance

The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.  相似文献   
89.
The study of human lipoprotein (a) [Lp(a)] has been hampered due to the lack of appropriate animal models since apolipoprotein (a) [apo(a)] is found only in primates and humans. In addition, human apo(a) in transgenic mice can not bind to murine apoB to form Lp(a) particles. In this study, we generated three independent transgenic rabbits expressing human apo(a) in their plasma at 1.8-4.5 mg/dl. In the plasma of transgenic rabbits, unlike the plasma of transgenic mice, about 80% of the apo(a) was covalently associated with rabbit apo-B and was contained in the fractions with density 1.02-1.10 g/ml, indicating the formation of Lp(a). These results suggest that transgenic rabbits expressing human apo(a) exhibit efficient assembly of Lp(a) and can be used as an animal model for the study of human Lp(a).  相似文献   
90.
We found a 2S storage albumin from the seed of tomato ( Lycopersicon esculentum L. cv. Cherry) that cross-reacted with antiserum to the fruit lectin, and named it Lec2SA. According to its size and basicity, Lec2SA was classified into four isoforms. These isoforms have an M(r) of approximately 12,000, and are composed of a small subunit (M(r) 4,000) and a large subunit (M(r) 8,000) linked by disulfide bonds. The complete amino acid sequence of Lec2SA was determined. The small subunit was composed of 32 amino acids, whereas the large subunit contained 70 amino acids with a pyroglutamine as the N-terminal residue. The sequence of Lec2SA was similar to that of 2S albumins from different plants, such as Brazil nut and castor beans. Furthermore, a sequence similarity was found between the large subunit of Lec2SA and the peptide sequence from tomato lectin. Although these similarities were found, Lec2SA did not show hemagglutinating activity or sugar-chain-binding activity, indicating that Lec2SA lacks the carbohydrate-binding domain. These results suggest that tomato lectin is a chimeric lectin sharing the seed storage protein-like domain that is incorporated into the gene encoding tomato lectin through gene fusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号