首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   50篇
  2023年   3篇
  2022年   14篇
  2021年   28篇
  2020年   13篇
  2019年   18篇
  2018年   11篇
  2017年   9篇
  2016年   21篇
  2015年   34篇
  2014年   53篇
  2013年   64篇
  2012年   70篇
  2011年   66篇
  2010年   39篇
  2009年   37篇
  2008年   64篇
  2007年   50篇
  2006年   48篇
  2005年   41篇
  2004年   37篇
  2003年   36篇
  2002年   25篇
  2001年   22篇
  2000年   22篇
  1999年   8篇
  1997年   10篇
  1996年   2篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   15篇
  1991年   12篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   7篇
  1983年   6篇
  1981年   3篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
  1968年   2篇
排序方式: 共有988条查询结果,搜索用时 31 毫秒
231.
232.
It is well known that Gαi1(GDP) binds strongly to Gβγ subunits to form the Gαi1(GDP)-Gβγ heterotrimer, and that activation to Gαi1(GTP) results in conformational changes that reduces its affinity for Gβγ subunits. Previous studies of G protein subunit interactions have used stoichiometric amounts of the proteins. Here, we have found that Gαi1(GDP) can bind a second Gβγ subunit with an affinity only 10-fold weaker than the primary site and close to the affinity between activated Gαi1 and Gβγ subunits. Also, we find that phospholipase Cβ2, an effector of Gβγ, does not compete with the second binding site implying that effectors can be bound to the Gαi1(GDP)-(Gβγ)2 complex. Biophysical measurements and molecular docking studies suggest that this second site is distant from the primary one. A synthetic peptide having a sequence identical to the putative second binding site on Gαi1 competes with binding of the second Gβγ subunit. Injection of this peptide into cultured cells expressing eYFP-Gαi1(GDP) and eCFP-Gβγ reduces the overall association of the subunits suggesting this site is operative in cells. We propose that this second binding site serves to promote and stabilize G protein subunit interactions in the presence of competing cellular proteins.The plasma membranes of cells are organized as a series of protein-rich and lipid-rich domains (13). Many of the protein-rich domains, in particular those organized by caveolin proteins, are thought to be complexes of functionally related proteins that transduce extracellular signals (2). There is increasing evidence that heterotrimeric G proteins exist in pre-formed membrane complexes with their receptors and their intracellular effectors (48).The G protein signaling system is initiated when an extracellular agonist binds to its specific G protein-coupled receptor (for review see Refs. 912). The ligand-bound receptor will then catalyze the exchange of GTP for GDP on the Gα subunit in the G protein heterotrimer. In the basal state, Gα(GDP) binds strongly to Gβγ, but in the GTP-bound state this affinity is reduced, allowing Gα(GTP) and Gβγ subunits to individually bind to a host of specific intracellular enzymes and change their catalytic activity.Although the interactions between G protein subunits have been studied extensively in vitro, their behavior in cells may differ. For example, in pure or semi-pure systems, activation of Gα(GDP) sufficiently weakens its affinity for Gβγ resulting in dissociation (13). However, in cells separation of the heterotrimer is observed under some circumstances, but not others (7, 1417). The reason for these differences in behavior is not clear. There are four families of Gα subunits that each contain several members, and, additionally, there are many subtypes of Gβγ subunits (18). It is possible that differences in dissociation behavior reflect differences in affinity between G protein subunit subtypes (19), the presence of various protein partners, and/or differences in post-synthetic modifications of the subunits (20).The mechanism that allows activated G proteins to remain bound is not apparent from the crystal structure (21, 22). If G protein subunits do not dissociate in cells, then their interaction must change in such a manner as to expose the effector interaction site(s). We have found that phospholipase Cβ1 (PLCβ1),4 an important effector of Gαq (23), is bound to Gαq prior to activation and throughout the activation cycle (6) implying that Gαq(GDP) interacts with PLCβ1 in a non-functional manner.We have evidence that signaling complexes are stabilized by a series of secondary interactions. Using purified proteins and model membranes, we have found that membranes of the Gαq-Gβγ/PLCβ1/RGS4 signaling system have secondary, weaker binding sites to members of this signaling system in addition to their high affinity site(s) to their functional partner(s). We speculate that secondary contacts allow for self-scaffolding of signaling proteins. To understand the nature of these secondary contacts, we have studied the ability of the Gαi1(GDP)-Gβγ heterotrimer to remain complexed through the activation cycle (24). Here, we present evidence that Gαi1(GDP) has two distinct Gβγ binding sites that only differ in affinity by an order of magnitude and may allow for continued association between the subunits upon activation. We also find that this site plays an important role in stabilizing G protein associations in cells and provides a mechanism of self-scaffolding.  相似文献   
233.
234.
Recently we have reported the characterization of a novel single subunit 62-kDa polypeptide with ddNTP-sensitive DNA polymerase activity from the developing seeds of mungbean (Vigna radiata). The protein showed higher expression and activity level during nuclear endoreduplication stages of mungbean seeds and similarity with mammalian DNA polymerase β in many physicochemical properties.1 The enzyme was found to specifically interact with PCNA (proliferating cell nuclear antigen),2 and expressed in both meristematic and meiotic tissues. Functional assays have demonstrated binding of the enzyme to normal and mismatched DNA substrates and with fidelity DNA synthesis in moderately processive mode, suggesting probable involvement of the enzyme in both replication and recombination.3 Here we have discussed the position of mungbean DNA polymerase as a homologue of DNA Pol λ, one of the newly identified member of family-X DNA polymerase in plants and illustrated the functional relevance of this enzyme in maintaining the coordination between DNA replication and repair in plant genome.Key words: family X-DNA polymerase, DNA polymerase λ, mungbean DNA polymerase, BRCT module, DNA repair  相似文献   
235.
The concept of robustness of regulatory networks has received much attention in the last decade. One measure of robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which the system is functional. In this paper, we show that, in addition to volume, the geometry of this region has important consequences for the robustness and the fragility of a network. We develop an approximation within which we could algebraically specify the feasible region. We analyze the segment polarity gene network to illustrate our approach. The study of random walks in the parameter space and how they exit the feasible region provide us with a rich perspective on the different modes of failure of this network model. In particular, we found that, between two alternative ways of activating Wingless, one is more robust than the other. Our method provides a more complete measure of robustness to parameter variation. As a general modeling strategy, our approach is an interesting alternative to Boolean representation of biochemical networks.  相似文献   
236.
The Indian poultry industry is one of the fast-growing sectors of which duck farming plays an important role. Duck population in India is 33.51 million that is concentrated towards north-east and southern parts of the country who rears mainly for eggs and meat. Duck diseases are of great concern as they badly affect the financial status of the small, landless farmers. Databases such as Google Scholar, PubMed, J gate were used to search articles between 2000 and 2019 that showed the prevalence of viral, bacterial, and parasitic duck diseases. R open source software was used to derive forest plots by statistical analysis. Pooled prevalence estimates of duck diseases worldwide was found to be 20% (95%-CI:15–26). Also, continent-wise analysis of all duck diseases has revealed highest prevalence in North America, followed by Asia, Africa, Europe,Oceania and South America. This prevalence of data would be helpful to the policymakers to develop appropriate intervention strategies to prevent and control diseases in their respective locations.  相似文献   
237.
238.
The large serine/threonine protein kinase mTOR regulates cellular and organismal homeostasis by coordinating anabolic and catabolic processes with nutrient, energy, and oxygen availability and growth factor signaling. Cells and organisms experience a wide variety of insults that perturb the homeostatic systems governed by mTOR and therefore require appropriate stress responses to allow cells to continue to function. Stress can manifest from an excess or lack of upstream signals or as a result of genetic perturbations in upstream effectors of the pathway. mTOR nucleates two large protein complexes that are important nodes in the pathways that help buffer cells from stresses, and are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes. This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them.  相似文献   
239.
The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号