首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   62篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   6篇
  2018年   15篇
  2017年   7篇
  2016年   18篇
  2015年   13篇
  2014年   23篇
  2013年   40篇
  2012年   31篇
  2011年   47篇
  2010年   24篇
  2009年   19篇
  2008年   40篇
  2007年   33篇
  2006年   46篇
  2005年   25篇
  2004年   38篇
  2003年   27篇
  2002年   40篇
  2001年   29篇
  2000年   20篇
  1999年   30篇
  1998年   20篇
  1997年   11篇
  1996年   13篇
  1995年   14篇
  1994年   13篇
  1993年   11篇
  1992年   23篇
  1991年   28篇
  1990年   19篇
  1989年   24篇
  1988年   15篇
  1987年   17篇
  1986年   22篇
  1985年   10篇
  1984年   14篇
  1983年   11篇
  1982年   14篇
  1981年   7篇
  1979年   13篇
  1978年   6篇
  1976年   6篇
  1974年   7篇
  1973年   7篇
  1971年   4篇
  1969年   5篇
  1968年   5篇
排序方式: 共有948条查询结果,搜索用时 187 毫秒
101.
Derivatives of CD4 mimics were designed and synthesized to interact with the conserved residues of the Phe43 cavity in gp120 to investigate their anti-HIV activity, cytotoxicity, and CD4 mimicry effects on conformational changes of gp120. Significant potency gains were made by installation of bulky hydrophobic groups into the piperidine moiety, resulting in discovery of a potent compound with a higher selective index and CD4 mimicry. The current study identified a novel lead compound 11 with significant anti-HIV activity and lower cytotoxicity than those of known CD4 mimics.  相似文献   
102.
We identified a fused heteroaromatic amido structure based on the phenanthridine skeleton as a superior scaffold for candidate drugs with potent anti-HCV activity. Among the compounds synthesized, a phenanthridine analogue with a 1,3-dioxolyl group (24) possessed the most potent anti-HCV activity (EC(50) value: 50 nM), with acceptable cytotoxicity. The structural development and structure-activity relationships of these compounds are described.  相似文献   
103.
Introduction of an alkylcarboxylic acid unit, which is a partial structure of endogenous peroxisome proliferator-activated receptor (PPAR) ligands, into a phenethylphenylphthalimide skeleton, which possesses liver X receptor (LXR) antagonistic activity, afforded novel PPAR ligands. The results of structure-activity relationship analysis and docking studies led us to the potent PPAR agonists 13c-e. The absolute configuration of 13c-e affects the PPAR subtype selectivity.  相似文献   
104.
A PCR-RFLP method targeted toward 26S rDNA and with 2 restriction enzymes, CfoI and BstF51, was developed to identify 11 Malassezia species. Not only type and standard strains but also 13 clinical isolates were identified successfully in this study. The results of identifications were confirmed by DNA sequencing.  相似文献   
105.
Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.  相似文献   
106.
Native Rhododendrons section Brachycaryx in eastern Japan are decreasing in their natural habitats and the need to restore these habitats is increasing. Conservation of genetic diversity in restoring habitat requires clarification of the balance of interspecies genetic exchange which occurs in their natural habitats. In well-preserved natural habitats of Rhododendron dilatatum, R. kiyosumense, and R. wadanum and their natural hybrids R.×kuratanum and R.×hasegawai we investigated their geographical distribution, frequency, and flowering period. DNA analysis of the internal transcribed spacer (ITS) region was also conducted to confirm the species related to hybridization. Our findings in the field survey were: (1) Hybridizations occur in the overlap zones of related species. (2) R.×hasegawai occurs more frequently than R.×kuratanum, probably because the flowering seasons of R. kiyosumense and R. wadanum overlap longer than those of R. dilatatum and R. kiyosumense. (3) Natural hybrid occurrence is, nevertheless, under 9% of all related Rhododendrons section Brachycalyx. Analysis of the ITS region suggested that the two hybrids are generated from interspecific gene exchange, i.e., (4) R. dilatatum and R. kiyosumense relate to the formation of R.×kuratanum. (5) R.×hasegawai is a hybrid of R. wadanum and some species other than R. wadanum. On the basis of these findings we delineated several guidelines for restoring habitats of Rhododendrons of Section Brachycaryx with concerns for genetic diversity: (1) Before use, identify plant materials by morphological traits to determine whether they are original species or hybrids. (2) Investigate the distribution of remnant Rhododendrons section Brachycaryx before restoration. (3) Combine plant materials of original species in the natural distribution.  相似文献   
107.
Inducible nitric-oxide synthase (iNOS) has been implicated in many human diseases including insulin resistance. However, how iNOS causes or exacerbates insulin resistance remains largely unknown. Protein S-nitrosylation is now recognized as a prototype of a redox-dependent, cGMP-independent signaling component that mediates a variety of actions of nitric oxide (NO). Here we describe the mechanism of inactivation of Akt/protein kinase B (PKB) in NO donor-treated cells and diabetic (db/db) mice. NO donors induced S-nitrosylation and inactivation of Akt/PKB in vitro and in intact cells. The inhibitory effects of NO donor were independent of phosphatidylinositol 3-kinase and cGMP. In contrast, the concomitant presence of oxidative stress accelerated S-nitrosylation and inactivation of Akt/PKB. In vitro denitrosylation with reducing agent reactivated recombinant and cellular Akt/PKB from NO donor-treated cells. Mutated Akt1/PKBalpha (C224S), in which cysteine 224 was substituted by serine, was resistant to NO donor-induced S-nitrosylation and inactivation, indicating that cysteine 224 is a major S-nitrosylation acceptor site. In addition, S-nitrosylation of Akt/PKB was increased in skeletal muscle of diabetic (db/db) mice compared with wild-type mice. These data suggest that S-nitrosylation-mediated inactivation may contribute to the pathogenesis of iNOS- and/or oxidative stress-involved insulin resistance.  相似文献   
108.
Exocytosis, a critical process for neuronal communication and hormonal regulation, involves several distinct steps including MgATP-dependent priming (which involves the synthesis of phosphatidylinositol 4,5-bisphosphate). Type I phosphatidylinositol phosphate kinases (PIPKIs) were purified biochemically as a priming factor. PIPKI consists of three domains: the N-terminal region, the central kinase domain, and the C-terminal region. Three isoforms (alpha, beta, and gamma) of PIPKI have been identified, and each is alternatively spliced at the C-terminal region. In the present study, we conducted a structure/function analysis of PIPKIs in the priming of exocytosis, and we found that recombinant PIPKIalpha and PIPKIgamma had priming activity. However, an unexpected finding of these results was that PIPKIbeta did not prime exocytosis. The N- or C-terminal region of PIPKIalpha and PIPKIgamma was not required for priming, which indicates that the central kinase domain is sufficient for this process. Alternative splicing in each isoform did not affect the isoform specificity in priming. Priming activity by isoforms is strongly correlated with their phosphatidylinositol phosphate kinase activity because PIPKIalpha and PIPKIgamma had higher kinase activity than PIPKIbeta. These results suggest that PIPKIalpha and PIPKIgamma are the critical priming factors for exocytosis; it also suggests that the levels of phosphatidylinositol phosphate kinase activity in producing phosphatidylinositol 4,5-bisphosphate specify the function of PIPKI isoforms in priming.  相似文献   
109.
Many secretory cells utilize a GTP-dependent pathway, in addition to the well characterized Ca2+-dependent pathway, to trigger exocytotic secretion. However, little is currently known about the mechanism by which this may occur. Here we show the key signaling pathway that mediates GTP-dependent exocytosis. Incubation of permeabilized PC12 cells with soluble RalA GTPase, but not RhoA or Rab3A GTPases, strongly inhibited GTP-dependent exocytosis. A Ral-binding fragment from Sec5, a component of the exocyst complex, showed a similar inhibition. Point mutations in both RalA (RalA(E38R)) and the Sec5 (Sec5(T11A)) fragment, which abolish RalA-Sec5 interaction also abolished the inhibition of GTP-dependent exocytosis. Moreover, transfection with wild-type RalA, but not RalA(E38R), enhanced GTP-dependent exocytosis. In contrast the RalA and the Sec5 fragment showed no inhibition of Ca2+-dependent exocytosis, but cleavage of a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein by Botulinum neurotoxin blocked both GTP- and Ca2+-dependent exocytosis. Our results indicate that the interaction between RalA and the exocyst complex (containing Sec5) is essential for GTP-dependent exocytosis. Furthermore, GTP- and Ca2+-dependent exocytosis use different sensors and effectors for triggering exocytosis whereas their final fusion steps are both SNARE-dependent.  相似文献   
110.
We found for the first time that Zygomycetes species showed resistance to Aureobasidin A, an antifungal agent. A novel family of neutral glycosphingolipids (GSLs) was found in these fungi and isolated from Mucor hiemalis, which is a typical Zygomycetes species. Their structures were completely determined by compositional sugar, fatty acid, and sphingoid analyses, methylation analysis, matrix-assisted laser desorption ionization time-of-flight/mass spectrometry, and (1)H NMR spectroscopy. They were as follows: Gal beta 1-6Gal beta 1-1Cer (CDS), Gal alpha 1-6Gal beta 1-6Gal beta 1-1Cer (CTS), Gal alpha 1-6Gal alpha 1-6Gal beta 1-6Gal beta 1-1Cer (CTeS), and Gal alpha 1-6Gal alpha 1-6Gal alpha 1-6Gal beta 1-6Gal beta 1-1Cer (CPS). The ceramide moieties of these GSLs consist of 24:0, 25:0, and 26:0 2-hydroxy acids as major fatty acids and 4-hydroxyoctadecasphinganine (phytosphingosine) as the sole sphingoid. However, the glycosylinositolphosphoceramide families that are the major GSLs components in fungi were not detected in Zygomycetes at all. This seems to be the reason that Aureobasidin A is not effective for Zygomycetes as an antifungal agent. Our results indicate that the biosynthetic pathway for GSLs in Zygomycetes is significantly different from those in other fungi and suggest that any inhibitor of this pathway may be effective for mucormycosis, which is a serious pathogenic disease for humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号