首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6631篇
  免费   388篇
  国内免费   3篇
  7022篇
  2023年   14篇
  2022年   37篇
  2021年   95篇
  2020年   64篇
  2019年   64篇
  2018年   112篇
  2017年   81篇
  2016年   152篇
  2015年   214篇
  2014年   269篇
  2013年   454篇
  2012年   436篇
  2011年   429篇
  2010年   280篇
  2009年   290篇
  2008年   477篇
  2007年   436篇
  2006年   435篇
  2005年   432篇
  2004年   459篇
  2003年   410篇
  2002年   343篇
  2001年   64篇
  2000年   56篇
  1999年   65篇
  1998年   81篇
  1997年   64篇
  1996年   41篇
  1995年   59篇
  1994年   49篇
  1993年   37篇
  1992年   49篇
  1991年   27篇
  1990年   33篇
  1989年   29篇
  1988年   34篇
  1987年   27篇
  1986年   26篇
  1985年   24篇
  1984年   21篇
  1983年   21篇
  1982年   27篇
  1981年   27篇
  1980年   15篇
  1979年   28篇
  1978年   21篇
  1977年   21篇
  1976年   18篇
  1970年   11篇
  1969年   10篇
排序方式: 共有7022条查询结果,搜索用时 16 毫秒
31.
In eukaryotic cells, mitochondrial dysfunction is associated with a variety of human diseases. Delivery of exogenous functional mitochondria into damaged cells has been proposed as a mechanism of cell transplant and physiological repair for damaged tissue. We here demonstrated that isolated mitochondria can be transferred into homogeneic and xenogeneic cells by simple co‐incubation using genetically labelled mitochondria, and elucidated the mechanism and the effect of direct mitochondrial transfer. Intracellular localization of exogenous mitochondria was confirmed by PCR, real‐time PCR, live fluorescence imaging, three‐dimensional reconstruction imaging, continuous time‐lapse microscopic observation, flow cytometric analysis and immunoelectron microscopy. Isolated homogeneic mitochondria were transferred into human uterine endometrial gland‐derived mesenchymal cells in a dose‐dependent manner. Moreover, mitochondrial transfer rescued the mitochondrial respiratory function and improved the cellular viability in mitochondrial DNA‐depleted cells and these effects lasted several days. Finally, we discovered that mitochondrial internalization involves macropinocytosis. In conclusion, these data support direct transfer of exogenous mitochondria as a promising approach for the treatment of various diseases.  相似文献   
32.
It is known that cisplatin induces the excretion of zinc from the urine and thereby reduces its serum concentration. However, the fluctuation of these trace elements during or after cisplatin-based chemotherapy has not been evaluated. To answer this question, we performed a clinical study in esophageal cancer patients undergoing cisplatin-based chemotherapy. Eighteen patients with esophageal cancer who were not able to swallow food or water orally due to complete stenosis of the esophagus were evaluated. The patients were divided into a control group [total parenteral nutrition (TPN) alone for 28?days, ten cases] and an intervention group (TPN with additional trace elements for 28?days, eight cases). The serum concentrations of zinc, iron, copper, manganese, triiodothyronin (T3), and thyroxin (T4), as alternative indicators of iodine, were measured on days?0, 14, and 28 of treatment, and statistically analyzed on day?28. In the control group, the serum concentration of copper was significantly decreased from 135.4 (day?0) to 122.1???g/ml (day?14), and finally to 110.6???g/ml (day?28, p?=?0.015). The concentration of manganese was also significantly decreased from 1.34 (day?0) to 1.17???g/ml (day?14) and finally to 1.20 (day?28, p?=?0.049). The levels of zinc, iron, T3, and T4 were not significantly changed. In the intervention group, the supplementation with trace elements successfully prevented these decreases in their concentrations. TPN with supplementary trace elements is preferable and recommended for patients who are undergoing chemotherapy in order to maintain the patients?? nutrient homeostasis.  相似文献   
33.
34.
35.
Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.  相似文献   
36.
Understanding of standardized uptake value (SUV) of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) depends on the background accumulations of glucose because the SUV often varies the status of patients. The purpose of this study was to develop a new method for quantitative analysis of SUV of FDG-PET scan images. The method included an anatomical standardization and a statistical comparison with normal cases by using Z-score that are often used in SPM or 3D-SSP approach for brain function analysis. Our scheme consisted of two approaches, which included the construction of a normal model and the determination of the SUV scores as Z-score index for measuring the abnormality of an FDG-PET scan image. To construct the normal torso model, all of the normal images were registered into one shape, which indicated the normal range of SUV at all voxels. The image deformation process consisted of a whole body rigid registration of shoulder to bladder region and liver registration and a non-linear registration of body surface by using the thin-plate spline technique. In order to validate usefulness of our method, we segment suspicious regions on FDG-PET images manually, and obtained the Z-scores of the regions based on the corresponding voxels that stores the mean and the standard deviations from the normal model. We collected 243 (143 males and 100 females) normal cases to construct the normal model. We also extracted 432 abnormal spots from 63 abnormal cases (73 cancer lesions) to validate the Z-scores. The Z-scores of 417 out of 432 abnormal spots were higher than 2.0, which statistically indicated the severity of the spots. In conclusions, the Z-scores obtained by our computerized scheme with anatomical standardization of torso region would be useful for visualization and detection of subtle lesions on FDG-PET scan images even when the SUV may not clearly show an abnormality.  相似文献   
37.
38.
Aquatic mosses of Leptobryum species form unique tower-like pillars of vegetation termed “moss pillars” in Antarctic lakes. Moss pillars have distinct redox-affected sections: oxidative exteriors and reductive interiors. We have proposed that a “pillar” is a community and habitat of functionally interdependent organisms and may represent a mini-biosphere. Batteries of 16S rRNA genotypes, or phylotypes, of eubacteria and cyanobacteria, but no archaea, have been identified in moss pillars. However, detailed identification or phylogenetic analyses of the moss and their associated eukaryotic microbiota have not been performed. This study analyzed near-full-length 18S rRNA gene sequences obtained from two whole moss pillars. In total, 28 PCR clone libraries from two whole moss pillars were constructed, and 96 clones from each library (total 2,688 clones) were randomly selected and sequenced. Molecular phylogenetic analysis revealed that the phylotype belonging to Bryophyta, considered to be derived from moss, was closely related (99.9?%) to the 18S rRNA gene sequence from Leptobryum pyriforme. Unexpectedly, phylotypes belonging to a novel clade of fungi dominated (approximately 27–75?%) the moss pillar libraries. This suggests that fungi may contribute to carbon cycling in the moss pillar as parasites or decomposers. In addition, phylotypes related to ciliates and tardigrades were subdominant in the exterior, while the phylotype of the ameba-like, single-celled eukaryote, Cercomonas (Cercozoa), was detected only in the interior. These features were shared by both moss pillars. The 18S rRNA gene-based profiles demonstrated that redox-related factors may control distribution of some eukaryotic microbes in a whole moss pillar.  相似文献   
39.
Dilated cardiomyopathy often results from autoimmunity triggered by microbial infections during myocarditis. However, it remains unclear how immunological disorders are implicated in pathogenesis of autoimmune myocarditis. Here, we demonstrated that Sema4A, a class IV semaphorin, plays key roles in experimental autoimmune myocarditis (EAM). Dendritic cells pulsed with myosin heavy chain-α peptides induced severe myocarditis in wild-type mice, but not in Sema4A-deficient mice. In adoptive transfer experiments, CD4+ T-cells from wild-type mice induced severe myocarditis, while CD4+ T-cells from Sema4A-deficient mice exhibited considerably attenuated myocarditis. Our results indicated that Sema4A is critically involved in EAM by regulating differentiation of T-cells.  相似文献   
40.
Capnocytophaga ochracea is a Gram-negative, rod-shaped bacterium that demonstrates gliding motility when cultured on solid agar surfaces. C. ochracea possesses the ability to form biofilms; however, factors involved in biofilm formation by this bacterium are unclear. A type IX secretion system (T9SS) in Flavobacterium johnsoniae was shown to be involved in the transport of proteins (e.g., several adhesins) to the cell surface. Genes orthologous to those encoding T9SS proteins in F. johnsoniae have been identified in the genome of C. ochracea; therefore, the T9SS may be involved in biofilm formation by C. ochracea. Here we constructed three ortholog-deficient C. ochracea mutants lacking sprB (which encodes a gliding motility adhesin) or gldK or sprT (which encode T9SS proteins in F. johnsoniae). Gliding motility was lost in each mutant, suggesting that, in C. ochracea, the proteins encoded by sprB, gldK, and sprT are necessary for gliding motility, and SprB is transported to the cell surface by the T9SS. For the ΔgldK, ΔsprT, and ΔsprB strains, the amounts of crystal violet-associated biofilm, relative to wild-type values, were 49%, 34%, and 65%, respectively, at 48 h. Confocal laser scanning and scanning electron microscopy revealed that the biofilms formed by wild-type C. ochracea were denser and bacterial cells were closer together than in those formed by the mutant strains. Together, these results indicate that proteins exported by the T9SS are key elements of the gliding motility and biofilm formation of C. ochracea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号