首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   49篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   9篇
  2016年   14篇
  2015年   16篇
  2014年   29篇
  2013年   38篇
  2012年   42篇
  2011年   38篇
  2010年   24篇
  2009年   13篇
  2008年   42篇
  2007年   45篇
  2006年   43篇
  2005年   37篇
  2004年   41篇
  2003年   36篇
  2002年   32篇
  2001年   17篇
  2000年   14篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1974年   2篇
  1972年   1篇
  1971年   3篇
  1970年   2篇
  1969年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有641条查询结果,搜索用时 15 毫秒
101.
102.
Previously, we developed a transgenic tobacco BY2 cell line (GT6) in which glycosylation was modified by expressing human beta(1,4)-galactosyltransferase (betaGalT). In this study, we produced a mouse monoclonal antibody in GT6 cells, and determined the sugar chain structures of plant-produced antibodies. Galactose-extended N-linked glycans comprised 16.7%, and high-mannose-type and complex-type glycans comprised 38.5% and 35.0% of the total number of glycans, respectively. N-linked glycans with the plant-specific sugars beta(1,2)-xylose and alpha(1,3)-fucose comprised 9.8%. The introduction of human betaGalT into suspension cultured tobacco cells resulted in the production of recombinant proteins with galactose-extended glycans and decreased contents of beta(1,2)-xylose and alpha(1,3)-fucose.  相似文献   
103.
Depletion of GLUT4, the primary glucose transporter protein in adipose tissue and skeletal muscle, is reported to contribute to insulin resistance in pregnancy or diabetes. To examine this phenomenon, the expression of GLUT4 protein was assessed by Western blotting in streptozotocin-induced diabetic pregnant rats. In adipose tissue, relative to control, it was decreased by 30% in the normal pregnant group (p<0.001), by 37% in the diabetic nonpregnant group (p<0.01) and by 65% in the diabetic pregnant group (p<0.001). On the other hand, no significant variation was evident among the groups in skeletal muscle. To assess the mechanisms responsible for depletion of GLUT4 protein in adipose tissue, we quantitated levels of GLUT4 mRNA with a RNase protection assay. It was decreased by 44% in the normal pregnant group (p<0.05) and by 55% in the diabetic pregnant group (p<0.05), but not altered in the diabetic nonpregnant group. These results suggest that the depletion of GLUT4 protein in adipose tissue is a factor contributing to insulin resistance in pregnancy or diabetes, especially when the two states exist in combination.  相似文献   
104.
Whole mucins and reduced subunits were extracted from the corpus of the rat stomach. After purification by Sepharose CL-4B chromatography followed by cesium trifluoroacetate equilibrium centrifugation, they were analyzed by Sepharose CL-2B chromatography, rate-zonal sedimentation centrifugation, and Q-Sepharose chromatography. Monoclonal antibodies RGM21 and HIK1083, which histochemically stained mucins in the surface and glandular mucosa of the rat stomach, respectively, were used to detect the site-specific mucins. Although RGM21- and HIK1083-reactive mucins both had a multimerized structure, the density and size of both the whole mucins and reduced subunits differed, thus indicating the presence of distinct mucin species in the surface and glandular mucosa. The mucin subunits were separated into four fractions, UB, B1, B2a, and B2b, by Q-Sepharose chromatography. HIK1083 reacted mainly with UB, while RGM21 reacted with B1, B2a, and B2b. These results, combined with dot-blot, amino acid, and carbohydrate composition analyses, showed that the surface mucins may consist of three kinds of subunits. In contrast, the glandular mucins may consist of one kind of subunit which differs from that of surface mucins.  相似文献   
105.
As an approach to understand the molecular mechanisms of endoplasmic reticulum (ER) protein sorting, we have isolated yeast rer mutants that mislocalize a Sec12-Mfα1p fusion protein from the ER to later compartments of the secretory pathway (S. Nishikawa and A. Nakano, Proc. Natl. Acad. Sci. USA 90:8179–8183, 1993). The temperature-sensitive rer2 mutant mislocalizes different types of ER membrane proteins, suggesting that RER2 is involved in correct localization of ER proteins in general. The rer2 mutant shows several other characteristic phenotypes: slow growth, defects in N and O glycosylation, sensitivity to hygromycin B, and abnormal accumulation of membranes, including the ER and the Golgi membranes. RER2 and SRT1, a gene whose overexpression suppresses rer2, encode novel proteins similar to each other, and their double disruption is lethal. RER2 homologues are found not only in eukaryotes but also in many prokaryote species and thus constitute a large gene family which has been well conserved during evolution. Taking a hint from the phenotype of newly established mutants of the Rer2p homologue of Escherichia coli, we discovered that the rer2 mutant is deficient in the activity of cis-prenyltransferase, a key enzyme of dolichol synthesis. This and other lines of evidence let us conclude that members of the RER2 family of genes encode cis-prenyltransferase itself. The difference in phenotypes between the rer2 mutant and previously obtained glycosylation mutants suggests a novel, as-yet-unknown role of dolichol.  相似文献   
106.
The doublecortin (DCX) gene was recently found to be involved in patients with X-linked lissencephaly and subcortical band heterotopia or double cortex syndrome. We have studied the coding regions of the DCX gene in 11 Japanese patients with cortical dysplasia and have identified three different mutations (R186C in exon 3, R272X and R303X in exon 5) in four sporadic female cases. R272X, which has been detected in two unrelated cases, is a novel mutation. Although the number of cases studied remains limited, exon 5 may be a common mutational site in Japanese patients in contrast to many previus reports concerning exons 2 and 3. Received: 28 October 1998 / Accepted: 26 February 1999  相似文献   
107.

Introduction

Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive.

Objective

To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells.

Methods

A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(?) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined.

Results

Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism.

Conclusions

Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.
  相似文献   
108.
BACKGROUND: ESR1 mutation in circulating cell-free DNA (cfDNA) is emerging as a noninvasive biomarker of acquired resistance to endocrine therapy, but there is a paucity of data comparing the status of ESR1 gene in cfDNA with that in its corresponding tumor tissue. The objective of this study is to validate the degree of concordance of ESR1 mutations between plasma and tumor tissue. METHODS: ESR1 ligand-binding domain mutations Y537S, Y537N, Y537C, and D538G were analyzed using droplet digital PCR in 35 patients with metastatic breast cancer (MBC) (35 tumor tissue samples and 67 plasma samples). RESULTS: Of the 35 paired samples, 26 (74.3%) were concordant: one patient had detectable ESR1 mutations both plasma (ESR1 Y537S/Y537N) and tumor tissue (ESR1 Y537S/Y537C), and 25 had WT ESR1 alleles in both. Nine (25.7%) had discordance between the plasma and tissue results: five had mutations detected only in their tumor tissue (two Y537S, one Y537C, one D538G, and one Y537S/Y537N/D538G), and four had mutations detected only in their plasma (one Y537S, one Y537N, and two Y537S/Y537N/D538G). Furthermore, longitudinal plasma samples from 19 patients were used to assess changes in the presence of ESR1 mutations during treatment. Eleven patients had cfDNA ESR1 mutations over the course of treatment. A total of eight of 11 patients with MBC with cfDNA ESR1 mutations (72.7%) had the polyclonal mutations. CONCLUSION: We have shown the independent distribution of ESR1 mutations between plasma and tumor tissue in 35 patients with MBC.  相似文献   
109.
N,N′-dicyclohexylcarbodiimide (DCCD) was earlier reported to have stimulatory effects on mitochondrial respiration and to induce mitochondrial swelling, when it was added to mitochondrial suspensions. These data seem to imply that DCCD caused the mitochondrial permeability transition (PT), but this possibility had never been investigated. In the present study, effects of DCCD on the mitochondrial structure and function were studied in detail. DCCD was found to induce mitochondrial PT in a cyclosporine A-insensitive manner. Electron microscopic analysis also supported the induction of the mitochondrial PT by DCCD. However, different from many other PT inducers, DCCD failed to cause massive release of mitochondrial cytochrome c. To understand the relationship between the induction of mitochondrial PT and the release of mitochondrial cytochrome c, we compared the actions of DCCD on mitochondrial structure and function with those of Ca2+, known as an ordinary PT inducer. As a result, two parameters considered to be critical for controlling the release of mitochondrial cytochrome c on the induction of PT were mitochondrial volume and the velocity of mitochondrial oxygen consumption.  相似文献   
110.
The spindle pole body (SPB) of Schizosaccharomyces pombe is required for assembly of the forespore membrane (FSM) during meiosis. Before de novo biogenesis of the FSM, the meiotic SPB forms outer plaques, an event referred to as SPB modification. A constitutive SPB component, Spo15, plays an indispensable role in SPB modification and sporulation. Here, we analyzed two sporulation-specific genes, spo13(+) and spo2(+), which are not required for progression of meiotic nuclear divisions, but are essential for sporulation. Spo13 is a 16-kDa coiled-coil protein, and Spo2 is a 15-kDa nonconserved protein. Both Spo13 and Spo2 specifically associated with the meiotic SPB. The respective deletion mutants are viable, but defective in SPB modification and in the onset of FSM formation. Spo13 and Spo2 localized on the cytoplasmic side of the SPB in close contact with the nascent FSM. Localization of Spo13 to the SPB was dependent on Spo15 and Spo2; that of Spo2 depended only on Spo15, suggesting that their recruitment to the SPB is strictly controlled. Spo2 physically associated with both Spo15 and Spo13, but Spo13 and Spo15 did not interact directly. Taken together, these observations indicate that Spo2 is recruited to the SPB during meiosis and then assists in the localization of Spo13 to the outer surface of the SPB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号