首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1865篇
  免费   123篇
  1988篇
  2022年   11篇
  2021年   26篇
  2020年   9篇
  2019年   19篇
  2018年   28篇
  2017年   22篇
  2016年   34篇
  2015年   46篇
  2014年   63篇
  2013年   121篇
  2012年   122篇
  2011年   117篇
  2010年   69篇
  2009年   67篇
  2008年   100篇
  2007年   109篇
  2006年   105篇
  2005年   104篇
  2004年   106篇
  2003年   98篇
  2002年   114篇
  2001年   30篇
  2000年   40篇
  1999年   38篇
  1998年   31篇
  1997年   19篇
  1996年   26篇
  1995年   21篇
  1994年   11篇
  1993年   18篇
  1992年   23篇
  1991年   16篇
  1990年   16篇
  1989年   18篇
  1988年   28篇
  1987年   28篇
  1986年   20篇
  1985年   13篇
  1984年   8篇
  1983年   16篇
  1982年   13篇
  1981年   13篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   4篇
  1974年   6篇
  1973年   7篇
  1971年   3篇
排序方式: 共有1988条查询结果,搜索用时 0 毫秒
971.
Cerebrosides are a kind of important bioactive substance in sea cucumber. A novel cerebroside, AMC-2, was purified from the less-polar lipid fraction of the sea cucumber Acaudina molpadioides by repeated column chromatography. The major structure of AMC-2 was analyzed by gas chromatography-mass spectra. The amide-linked fatty acid unit was confirmed to be four saturated and monounsaturated α-hydroxy fatty acids, the long-chain base was dihydroxy sphingoid base with one double bond, and the glycosyl group was glucose. We also investigated the anti-fatty liver activity of AMC-2 in rats with fatty liver induced by orotic acid. AMC-2 significantly reduced hepatic triglyceride (TG) and total cholesterol (TC) levels at a diet supplement of 0.03% and 0.006%. The indexes of stearoyl-CoA desaturase (SCD) activity and mRNA expression were significantly decreased by AMC-2. This indicates that AMC-2 ameliorated nonalcoholic fatty liver disease (NAFLD) through suppression of SCD activity and impaired the biosynthesis of monounsaturated fatty acids in the livers of the rats.  相似文献   
972.
We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm–temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.  相似文献   
973.
974.
Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/− as well as USAG-1−/− rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.  相似文献   
975.
An investigation was made into the oligomerization, the ability to form pores and the secretion-related properties of the 45 kDa C-terminal domain of the IgA protease (C-IgAP) from Neisseria gonorrhoeae. This protease is the best studied example of the autotransporters (ATs), a large family of exoproteins from Gram-negative bacteria that includes numerous virulence factors from human pathogens. These proteins contain an N-terminal passenger domain that em bodies the secreted polypeptide, while the C-domain inserts into the outer membrane (OM) and trans locates the linked N-module into the extracellular medium. Here we report that purified C-IgAP forms an oligomeric complex of approximately 500 kDa with a ring-like structure containing a central cavity of approximately 2 nm diameter that is the conduit for the export of the N-domains. These data overcome the previous model for ATs, which postulated the passage of the N-module through the hydrophilic channel of the beta-barrel of each monomeric C-domain. Our results advocate a secretion mechanism not unlike other bacterial export systems, such as the secretins or fimbrial ushers, which rely on multimeric complexes assembled in the OM.  相似文献   
976.
Epolactaene, isolated from cultured Penicillium sp. BM 1689-P mycelium, induces neurite outgrowth and arrests the cell cycle of the human neuroblastoma cell line, SH-SY5Y, at the G1 phase. We have found that epolactaene and its derivatives induce apoptosis in the human leukemia B-cell line, BALL-1. In this study, we prepared fluorescent and biotinylated epolactaene derivatives. We characterized the cellular location and the identification of BALL-1 proteins that reacted with these compounds. The results obtained from the reaction of epolactaene or its derivative with N-acetylcysteine methyl ester indicate that these compounds induce the disulfide formation and the -position of the epoxylactam core is the reactive site.  相似文献   
977.
Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes located between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.  相似文献   
978.
AimsEffect of mitochondrial permeability transition (MPT) inhibitors on mitochondrial membrane-bound glutathione transferase (mtMGST1) activity in rat liver was investigated in vitro.Main methodsWhen mitochondria were incubated with MPT inhibitors, mtMGST1 activity was decreased dose dependently and their 50% inhibition concentration (IC50) were 1.2 μM (cyclosporin A; CsA), 31 μM (bongkrekic acid; BKA), 1.8 mM (ADP), and 3.2 mM (ATP). The decrease of mtMGST1 activity by the MPT inhibitors was not observed in the presence of detergent Triton X-100. On the contrary, mtMGST1 inhibition by GST inhibitors such as cibacron blue (IC50, 4.2 μM) and S-hexylglutathione (IC50, 480 μM) was not affected in the presence of detergent. Although mtMGST1 resides in both the inner (IMM) and outer mitochondrial membranes (OMM), only mtMGST1 in the IMM was inhibited by the MPT inhibitors in the absence of detergent. GST inhibitors decreased mtMGST1 activity both in the IMM and OMM regardless of the presence or absence of detergent. Cytosolic GSTs and microsomal MGST1 were not inhibited by the MPT inhibitors.Key findingsThese results indicate that mtMGST1 is inhibited by MPT inhibitors through membrane components, not directly by the inhibitors.SignificanceSince CsA binds to cyclophilin D (Cyp-D) in the mitochondrial matrix whereas BKA or ADP binds to adenine nucleotide translocator (ANT) in the IMM, it was suggested that mtMGST1 in the IMM interacts with Cyp-D/ANT and the binding of MPT inhibitors to Cyp-D or ANT causes their conformational change followed by an alteration of mtMGST1 conformation, resulting in decreasing mtMGST1 activity.  相似文献   
979.
980.
The aim of this study was to examine the effect of clarithromycin, a CYP3A4 inhibitor, on the enantioselective disposition of lansoprazole among three different CYP2C19 genotype groups in healthy Japanese subjects. These subjects included 6 each of homozygous extensive metabolizers (homEMs), heterozygous extensive metabolizers (hetEMs), and poor metabolizers (PMs). In the EMs of CYP2C19, clarithromycin markedly increased Cmax and the AUC0-infinity of (S)-lansoprazole and (S)-hydroxylansoprazole compared with those of the corresponding (R)-enantiomers. Clarithromycin significantly increased Cmax and the AUC0-infinity of (S)-lansoprazole in the homEMs by 110% and 115%, respectively, and in the hetEMs by 105% and 103%, respectively, compared with placebo. Furthermore, clarithromycin slightly prolonged the elimination half-life of (R)-lansoprazole in the homEMs and hetEMs but did not alter that of (S)-lansoprazole. In the of PMs CYP2C19, clarithromycin significantly increased Cmax and the AUC0-infinity and significantly prolonged the elimination half-lives of (R)- and (S)-lansoprazole by 51% and 49%, respectively. The present study suggests that there are significant drug interactions between (R)- or (S)-lansoprazole and clarithromycin in EMs by inhibiting the CYP3A4-catalyzed sulfoxidation primarily during the first pass, whereas in PMs, the overall metabolism of lansoprazole is inhibited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号