首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   9篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   9篇
  2017年   5篇
  2016年   7篇
  2015年   13篇
  2014年   17篇
  2013年   15篇
  2012年   17篇
  2011年   18篇
  2010年   10篇
  2009年   7篇
  2008年   12篇
  2007年   4篇
  2006年   9篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1967年   1篇
排序方式: 共有197条查询结果,搜索用时 31 毫秒
91.
BackgroundConflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.ResultsFOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.ConclusionsThe results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.

Clinical Relevance

Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that “kick-starts” the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.  相似文献   
92.
Neurodevelopmental disorders – including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, communication disorders, intellectual disability, motor disorders, specific learning disorders, and tic disorders – manifest themselves early in development. Valid, reliable and broadly usable biomarkers supporting a timely diagnosis of these disorders would be highly relevant from a clinical and public health standpoint. We conducted the first systematic review of studies on candidate diagnostic biomarkers for these disorders in children and adolescents. We searched Medline and Embase + Embase Classic with terms relating to biomarkers until April 6, 2022, and conducted additional targeted searches for genome-wide association studies (GWAS) and neuroimaging or neurophysiological studies carried out by international consortia. We considered a candidate biomarker as promising if it was reported in at least two independent studies providing evidence of sensitivity and specificity of at least 80%. After screening 10,625 references, we retained 780 studies (374 biochemical, 203 neuroimaging, 133 neurophysiological and 65 neuropsychological studies, and five GWAS), including a total of approximately 120,000 cases and 176,000 controls. While the majority of the studies focused simply on associations, we could not find any biomarker for which there was evidence – from two or more studies from independent research groups, with results going into the same direction – of specificity and sensitivity of at least 80%. Other important metrics to assess the validity of a candidate biomarker, such as positive predictive value and negative predictive value, were infrequently reported. Limitations of the currently available studies include mostly small sample size, heterogeneous approaches and candidate biomarker targets, undue focus on single instead of joint biomarker signatures, and incomplete accounting for potential confounding factors. Future multivariable and multi-level approaches may be best suited to find valid candidate biomarkers, which will then need to be validated in external, independent samples and then, importantly, tested in terms of feasibility and cost-effectiveness, before they can be implemented in daily clinical practice.  相似文献   
93.
Endothelin receptors ET(A)R and ET(B)R form tight receptor-ligand complexes that complicate our understanding of the physiological, pharmacological, and biochemical properties of these receptors. Although radioligand-binding studies have demonstrated the binding of endothelin-1 (ET-1) to ET(A)R to be essentially irreversible, ET(A)R internalize in a ligand-dependent manner, release ET-1, and then recycle to the cell surface. Salicylic acid (SA) reduces ET-1 binding (IC(50) = 10 mmol/L) to recombinant ET(A)R in isolated membranes by promoting dissociation of [(125)I]ET-1. In the present study, SA (5 mmol SA/L) did not alter [(125I)]ET-1 binding to intact adult rat ventricular myocytes. The lack of effect was not due to internalization of receptor-ligand complexes. However, 100 mmol SA/L significantly reduced [(125)I]ET-1 binding to both intact myocytes and isolated membranes. SA induced the phosphorylation p42/44 extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase and an unidentified 40-kDa protein on the activating threonine-glutamic acid-tyrosine (T-E-Y) motif. ERK phosphorylation was reduced by a MAP kinase kinase (MEK) inhibitor, PD98059. Phosphorylation of p40 was reduced by the p38 MAP kinase inhibitor SB203580, but not PD98059. However, inhibition of ERK or p38 MAP kinases did not alter the ability of 100 mmol SA/L to induce dissociation of [125I]ET-1. These results suggest that, in the ventricular myocyte, salicylic acid alters the kinetics of ET-1 binding. The results also suggest an allosteric binding site may be present that modulates the dissociation of ET-1 receptor-ligand complexes in response to an as-of-yet unidentified mediator.  相似文献   
94.
Tauroallocholate is the major bile salt of the lizard, Uromastix hardwickii. Alkaline hydrolysis of bile from 25 gallbladders provided 1.21 g of acidic material, about 90% of which was allocholic acid. Analyses by gas-liquid chromatography, and mass spectrometry verified the presence of almost 10% of deoxycholic acid and smaller amounts of other 5alpha and 5beta-bile acids.  相似文献   
95.
In the present work, magnesium deficiency effects were studied in Sulla carnosa plants grown in nutrient solution containing 1.50, 0.05, 0.01, and 0.00 mM Mg2+. After 5 weeks of treatment, fully expanded leaves were harvested to study their morphological and ultrastructural changes, as well as their carbohydrate, pigment, and Mg2+ concentrations. In control plants, leaves were well developed with remarkable green color. Down to 0.05 mM Mg2+, no chlorosis symptom was recorded, but below this concentration, mature leaves showed an appearance of interveinal chlorosis that was much more pronounced at 0.00 mM Mg2+ with the development of necrotic spots. Optima of chlorophyll a, chlorophyll b, and carotenoid concentrations were observed at 0.05 and 1.50 mM Mg2+; leaf magnesium concentration was severely reduced at 0.05 mM Mg2+. A significant decrease in pigment concentrations was noticed at 0.01 mM Mg2+, but the lowest values were recorded at 0.00 mM Mg2+. Enzymatic assays showed an increase in the accumulation of soluble sugars and starch with decreasing Mg2+ concentration. These results were in accordance with those of ultrastructural studies that revealed a marked alteration of chloroplasts in leaves of deficient plants. These chloroplasts were round and bigger as a result of a massive accumulation of oversized starch grains with disrupted thylakoids. As a whole, 1.50, 0.05, and 0.01 mM Mg2+ were found optimal, suboptimal, and deficient concentrations, respectively, the latter showing no significant difference with absolute Mg2+ absence (0.00 mM Mg2+).  相似文献   
96.
Gyrase is a type II DNA topoisomerase that introduces negative supercoils into DNA in an ATP-dependent reaction. It consists of a topoisomerase core, formed by the N-terminal domains of the two GyrA subunits and by the two GyrB subunits, that catalyzes double-stranded DNA cleavage and passage of a second double-stranded DNA through the gap in the first. The C-terminal domains (CTDs) of the GyrA subunits form a β-pinwheel and bind DNA around their positively charged perimeter. As a result, DNA is bound as a positive supercoil that is converted into a negative supercoil by strand passage. The CTDs contain a conserved 7-amino acid motif that connects blades 1 and 6 of the β-pinwheel and is a hallmark feature of gyrases. Deletion of this so-called GyrA-box abrogates DNA bending by the CTDs and DNA-induced narrowing of the N-gate, affects T-segment presentation, reduces the coupling of DNA binding to ATP hydrolysis, and leads to supercoiling deficiency. Recently, a severe loss of supercoiling activity of Escherichia coli gyrase upon deletion of the non-conserved acidic C-terminal tail (C-tail) of the CTDs has been reported. We show here that, in contrast to E. coli gyrase, the C-tail is a very moderate negative regulator of Bacillus subtilis gyrase activity. The C-tail reduces the degree of DNA bending by the CTDs but has no effect on DNA-induced conformational changes of gyrase that precede strand passage and reduces DNA-stimulated ATPase and DNA supercoiling activities only 2-fold. Our results are in agreement with species-specific, differential regulatory effects of the C-tail in gyrases from different organisms.  相似文献   
97.
Monoaminergic modulation of insect flight is well documented. Recently, we demonstrated that synaptic activity is required in serotonergic neurons for Drosophila flight. This requirement is during early pupal development, when the flight circuit is formed, as well as in adults. Using a Ca2+-activity-based GFP reporter, here we show that serotonergic neurons in both prothoracic and mesothoracic segments are activated upon air-puff-stimulated flight. Moreover ectopic activation of the entire serotonergic system by TrpA1, a heat activated cation channel, induces flight, even in the absence of an air-puff stimulus.  相似文献   
98.
The insufficient penetration through the cell membranes is one of the major drawbacks of chemotherapeutics such as 5‐fluorouracil (5‐FU; 1 ). To improve the penetration, a useful strategy is the attachment of lipophilic moieties. Thus, we have synthesized a series of nucleolipid derivatives of 5‐fluorouridine (5‐FUrd; 2a ), carrying lipophilic moieties at N(3) and/or at the 2′,3′‐O position, i.e., 3a, 3b, 4 – 7 , and tested their cytostatic/cytotoxic activities towards three carcinoma cell lines (colon (HT‐29), hepatocellular (HepG2), and renal (RENCA)) in comparison with 5‐FU ( 1 ) and 5‐FUrd ( 2a ). After 48 h of incubation, four derivatives, 3a, 3b, 5 , and 7 , showed inhibitory effects on the survival of HT‐29, HepG2, and RENCA cells. Additionally, to differentiate between anticancer and side‐effects, we tested the cytotoxicity of the derivatives in human macrophages. Interestingly, the derivatives 4, 5 , and 6 did not exhibit any effects on survival of THP‐1 macrophages. Furthermore, we investigated the apoptosis induction of compound 1 and 2a , and the above‐mentioned derivatives in HT‐29 cells. Derivative 5 showed the highest significant (p<0.05; p<0.01) increase of the apoptosis at 80 μM after 2‐h or 4‐h treatment, as well as after 6‐h incubation at 40 μM (p<0.05). Real‐time PCR revealed that 40‐μM derivative 5 showed a 1.8‐fold increase of the pro‐apoptotic caspase‐3 gene and a twofold significant increase (p<0.01 and p<0.05 vs. control and 1 , resp.) of the tumor suppressor TP53 gene, whereas the other compounds did not show any effect. We demonstrated that some 5‐FUrd derivatives such as compound 5 are more effective than 5‐FU or 5‐FUrd concerning a cytotoxic (vs. cytostatic (5‐FU, 5‐FUrd)) effect on different cancer cell lines, but without cytotoxic side‐effects on differentiated macrophages. Thus, compound 5 is suggested as a novel potent cytotoxic multi‐anti‐cancer drug.  相似文献   
99.
100.
DnaD and DnaB are essential DNA-replication-initiation proteins in low-G+C content Gram-positive bacteria. Here we use sensitive Hidden Markov Model-based techniques to show that the DnaB and DnaD proteins share a common structure that is evident across all their structural domains, termed DDBH1 and DDBH2 (DnaD DnaB Homology 1 and 2). Despite strong sequence divergence, many of the DNA-binding and oligomerization properties of these domains have been conserved. Although eluding simple sequence comparisons, the DDBH2 domains share the only strong sequence motif; an extremely highly conserved YxxxIxxxW sequence that contributes to DNA binding. Sequence alignments of DnaD alone fail to identify another key part of the DNA-binding module, since it includes a poorly conserved sequence, a solvent-exposed and somewhat unstable helix and a mobile segment. We show by NMR, in vitro mutagenesis and in vivo complementation experiments that the DNA-binding module of Bacillus subtilis DnaD comprises the YxxxIxxxW motif, the unstable helix and a portion of the mobile region, the latter two being essential for viability. These structural insights lead us to a re-evaluation of the oligomerization and DNA-binding properties of the DnaD and DnaB proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号