首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   30篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   15篇
  2014年   9篇
  2013年   8篇
  2012年   14篇
  2011年   16篇
  2010年   21篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   13篇
  2005年   9篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1958年   1篇
排序方式: 共有251条查询结果,搜索用时 15 毫秒
21.
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.  相似文献   
22.
Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.  相似文献   
23.
The tetramer is the most important form for acetylcholinesterase in physiological conditions, i.e., in the neuromuscular junction and the nervous system. It is important to study the diffusion of acetylcholine to the active sites of the tetrameric enzyme to understand the overall signal transduction process in these cellular components. Crystallographic studies revealed two different forms of tetramers, suggesting a flexible tetramer model for acetylcholinesterase. Using a recently developed finite element solver for the steady-state Smoluchowski equation, we have calculated the reaction rate for three mouse acetylcholinesterase tetramers using these two crystal structures and an intermediate structure as templates. Our results show that the reaction rates differ for different individual active sites in the compact tetramer crystal structure, and the rates are similar for different individual active sites in the other crystal structure and the intermediate structure. In the limit of zero salt, the reaction rates per active site for the tetramers are the same as that for the monomer, whereas at higher ionic strength, the rates per active site for the tetramers are approximately 67%-75% of the rate for the monomer. By analyzing the effect of electrostatic forces on ACh diffusion, we find that electrostatic forces play an even more important role for the tetramers than for the monomer. This study also shows that the finite element solver is well suited for solving the diffusion problem within complicated geometries.  相似文献   
24.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   
25.
Emerging evidence has suggested environmental factors as causative agents in the pathogenesis of primary biliary cirrhosis (PBC). We have hypothesized that in PBC the lipoyl domain of the immunodominant E2 component of pyruvate dehydrogenase (PDC-E2) is replaced by a chemical xenobiotic mimic, which is sufficient to break self-tolerance. To address this hypothesis, based upon our quantitative structure-activity relationship data, a total of 107 potential xenobiotic mimics were coupled to the lysine residue of the immunodominant 15 amino acid peptide of the PDC-E2 inner lipoyl domain and spotted on microarray slides. Sera from patients with PBC (n = 47), primary sclerosing cholangitis (n = 15), and healthy volunteers (n = 20) were assayed for Ig reactivity. PBC sera were subsequently absorbed with native lipoylated PDC-E2 peptide or a xenobiotically modified PDC-E2 peptide, and the remaining reactivity analyzed. Of the 107 xenobiotics, 33 had a significantly higher IgG reactivity against PBC sera compared with control sera. In addition, 9 of those 33 compounds were more reactive than the native lipoylated peptide. Following absorption, 8 of the 9 compounds demonstrated cross-reactivity with lipoic acid. One compound, 2-octynoic acid, was unique in both its quantitative structure-activity relationship analysis and reactivity. PBC patient sera demonstrated high Ig reactivity against 2-octynoic acid-PDC-E2 peptide. Not only does 2-octynoic acid have the potential to modify PDC-E2 in vivo but importantly it was/is widely used in the environment including perfumes, lipstick, and many common food flavorings.  相似文献   
26.
Ligand-gated ion channel receptors mediate the response of fast neurotransmitters by opening in less than a millisecond. Here, we investigated the activation mechanism of a serotonin-gated receptor (5-HT(3A)) by systematically introducing cysteine substitutions throughout the pore-lining M1-M2 loop and M2 transmembrane domain. We hypothesized that multiple cysteines in the narrowest region of the pore, which together can form a high affinity binding site for metal cations, would reveal changes in pore structure during gating. Using cadmium (Cd2+) as a probe, two cysteine substitutions in the cytoplasmic selectivity filter, S2'C and, to a lesser extent, G-2'C, showed high affinity inhibition with Cd2+ when applied extracellularly in the open state. Cd2+ inhibition in S2'C was attenuated if applied in the presence of an open-channel inhibitor and showed voltage-dependent recovery, indicating a direct effect of Cd2+ in the pore. When applied intracellularly, Cd2+ appeared to bind S2'C receptors in the closed state. The ability of cysteine side chains at the 2' and -2' positions to coordinate Cd2+ in both the native open and closed states of the channel suggests that the cytoplasmic selectivity filter of 5-HT(3A) receptors maintains a narrow pore during channel gating.  相似文献   
27.
Damage to mitochondria can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. However, fusion of uncoupled mitochondria with polarized mitochondria can compensate for damage, reverse membrane depolarization, and obviate mitophagy. Parkin, an E3 ubiquitin ligase that is mutated in monogenic forms of Parkinson's disease, was recently found to induce selective autophagy of damaged mitochondria. Here we show that ubiquitination of mitofusins Mfn1 and Mfn2, large GTPases that mediate mitochondrial fusion, is induced by Parkin upon membrane depolarization and leads to their degradation in a proteasome- and p97-dependent manner. p97, a AAA+ ATPase, accumulates on mitochondria upon uncoupling of Parkin-expressing cells, and both p97 and proteasome activity are required for Parkin-mediated mitophagy. After mitochondrial fission upon depolarization, Parkin prevents or delays refusion of mitochondria, likely by the elimination of mitofusins. Inhibition of Drp1-mediated mitochondrial fission, the proteasome, or p97 prevents Parkin-induced mitophagy.  相似文献   
28.
Observed increases in the Earth’s surface temperature bring with them associated changes in precipitation and atmospheric moisture that consequentially alter river flow regimes. Climate-induced flow regime changes are examined using the Indicators of Hydrologic Alteration. This article uses observed daily streamflow data to examine the flow regime alteration and how these changes might potentially affect freshwater ecosystems. Flow data from 23 gauging stations throughout Taiwan show that the annual extreme water conditions (1-, 3-, 7-, 30-, 90-day annual minima or maxima) have increased alteration compared to baseline periods (1961–1990). Specifically, more severe flood and drought events occur in the period after 1991 than the period from 1961 to 1990. The frequency and duration of flood and drought events also show increased fluctuation. Flow regimes are currently being altered by stressors that will continue into the foreseeable future and it is also happing elsewhere in the world. Aquatic organisms not only need to defend themselves from anthropogenic damage to the river system, but also face the on-going threat from climate change-induced thermal and flow regime alteration. This article raises this issue so that water resources managers may identify precautionary measures that reduce the cumulative effects of both anthropogenic flow alteration and changing climate conditions.  相似文献   
29.
Cationic antimicrobial peptides/proteins (AMPs) are important components of the host innate defense mechanisms against invading microorganisms. Here we demonstrate that OprI (outer membrane protein I) of Pseudomonas aeruginosa is responsible for its susceptibility to human ribonuclease 7 (hRNase 7) and α-helical cationic AMPs, instead of surface lipopolysaccharide, which is the initial binding site of cationic AMPs. The antimicrobial activities of hRNase 7 and α-helical cationic AMPs against P. aeruginosa were inhibited by the addition of exogenous OprI or anti-OprI antibody. On modification and internalization of OprI by hRNase 7 into cytosol, the bacterial membrane became permeable to metabolites. The lipoprotein was predicted to consist of an extended loop at the N terminus for hRNase 7/lipopolysaccharide binding, a trimeric α-helix, and a lysine residue at the C terminus for cell wall anchoring. Our findings highlight a novel mechanism of antimicrobial activity and document a previously unexplored target of α-helical cationic AMPs, which may be used for screening drugs to treat antibiotic-resistant bacterial infection.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号