首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1964篇
  免费   156篇
  2120篇
  2022年   13篇
  2021年   36篇
  2020年   15篇
  2019年   33篇
  2018年   24篇
  2017年   20篇
  2016年   32篇
  2015年   71篇
  2014年   91篇
  2013年   98篇
  2012年   145篇
  2011年   119篇
  2010年   89篇
  2009年   82篇
  2008年   129篇
  2007年   109篇
  2006年   130篇
  2005年   120篇
  2004年   114篇
  2003年   98篇
  2002年   113篇
  2001年   29篇
  2000年   16篇
  1999年   31篇
  1998年   39篇
  1997年   18篇
  1996年   14篇
  1995年   16篇
  1994年   12篇
  1993年   17篇
  1992年   19篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1984年   11篇
  1983年   13篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   12篇
  1978年   7篇
  1977年   9篇
  1976年   6篇
  1974年   10篇
  1973年   6篇
  1971年   4篇
排序方式: 共有2120条查询结果,搜索用时 15 毫秒
71.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   
72.
Protein turnover through cullin-3 is tightly regulated by posttranslational modifications, the COP9 signalosome, and BTB/POZ-domain proteins that link cullin-3 to specific substrates for ubiquitylation. In this paper, we report how potassium channel tetramerization domain containing 6 (KCTD6) represents a novel substrate adaptor for cullin-3, effectively regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5). Binding of sAnk1.5 to KCTD6, and its subsequent turnover is regulated through posttranslational modification by nedd8, ubiquitin, and acetylation of C-terminal lysine residues. The presence of the sAnk1.5 binding partner obscurin, and mutation of lysine residues increased sAnk1.5 protein levels, as did knockdown of KCTD6 in cardiomyocytes. Obscurin knockout muscle displayed reduced sAnk1.5 levels and mislocalization of the sAnk1.5/KCTD6 complex. Scaffolding functions of obscurin may therefore prevent activation of the cullin-mediated protein degradation machinery and ubiquitylation of sAnk1.5 through sequestration of sAnk1.5/KCTD6 at the sarcomeric M-band, away from the Z-disk-associated cullin-3. The interaction of KCTD6 with ankyrin-1 may have implications beyond muscle for hereditary spherocytosis, as KCTD6 is also present in erythrocytes, and erythrocyte ankyrin isoforms contain its mapped minimal binding site.  相似文献   
73.
The objective of this study was to investigate the efficacy of using quantitative magnetic resonance imaging (MRI) as a non-invasive tool for the monitoring of gene therapy for muscular dystrophy. The clinical investigations for this family of diseases often involve surgical biopsy which limits the amount of information that can be obtained due to the invasive nature of the procedure. Thus, other non-invasive tools may provide more opportunities for disease assessment and treatment responses. In order to explore this, dystrophic mdx4cv mice were systemically treated with a recombinant adeno-associated viral (AAV) vector containing a codon-optimized micro-dystrophin gene. Multi-parametric MRI of T2, magnetization transfer, and diffusion effects alongside 3-D volume measurements were then utilized to monitor disease/treatment progression. Mice were imaged at 10 weeks of age for pre-treatment, then again post-treatment at 8, 16, and 24 week time points. The efficacy of treatment was assessed by physiological assays for improvements in function and quantification of expression. Tissues from the hindlimbs were collected for histological analysis after the final time point for comparison with MRI results. We found that introduction of the micro-dystrophin gene restored some aspects of normal muscle histology and pathology such as decreased necrosis and resistance to contraction-induced injury. T2 relaxation values showed percentage decreases across all muscle types measured (tibialis anterior, gastrocnemius, and soleus) when treated groups were compared to untreated groups. Additionally, the differences between groups were statistically significant for the tibialis anterior as well. The diffusion measurements showed a wider range of percentage changes and less statistical significance while the magnetization transfer effect measurements showed minimal change. MR images displayed hyper-intense regions of muscle that correlated with muscle pathology in histological sections. T2 relaxation, alongside diffusion and magnetization transfer effects provides useful data towards the goal of non-invasively monitoring the treatment of muscular dystrophy.  相似文献   
74.
Western blotting is a commonly used technique in biological research. A major problem with Western blotting is not the method itself, but the use of poor quality antibodies as well as the use of different experimental conditions that affect the linearity and sensitivity of the Western blot. Investigation of some conditions that are commonly used and often modified in Western blotting, as well as some commercial antibodies, showed that published articles often fail to report critical parameters needed to reproduce the results. These parameters include the amount of protein loaded, the blocking solution and conditions used, the amount of primary and secondary antibodies used, the antibody incubation solutions, the detection method and the quantification method utilized. In the present study, comparison of ubiquitinated proteins in rat heart and liver samples showed different results depending on the antibody utilized. Validation of five commercial ubiquitin antibodies using purified ubiquitinated proteins, ubiquitin chains and free ubiquitin showed that these antibodies differ in their ability to detect free ubiquitin or ubiquitinated proteins. Investigating proteins modified with interferon-stimulated gene 15 (ISG15) in young and old rat hearts using six commercially available antibodies showed that most antibodies gave different semi-quantitative results, suggesting large variability among antibodies. Evidence showing the importance of the Western blot buffer and the concentration of antibody used is presented. Hence there is a critical need for comprehensive reporting of experimental conditions to improve the accuracy and reproducibility of Western blot analysis. A Western blotting minimal reporting standard (WBMRS) is suggested to improve the reproducibility of Western blot analysis.  相似文献   
75.
76.
We recently showed that excessive fructose consumption, already associated with numerous metabolic abnormalities, reduces rates of intestinal Ca(2+) transport. Using a rat lactation model with increased Ca(2+) requirements, we tested the hypothesis that mechanisms underlying these inhibitory effects of fructose involve reductions in renal synthesis of 1,25-(OH)(2)D(3). Pregnant and virgin (control) rats were fed isocaloric fructose or, as controls, glucose, and starch diets from d 2 of gestation to the end of lactation. Compared to virgins, lactating dams fed glucose or starch had higher rates of intestinal transcellular Ca(2+) transport, elevated intestinal and renal expression of Ca(2+) channels, Ca(2+)-binding proteins, and CaATPases, as well as increased levels of 25-(OH)D(3) and 1,25-(OH)(2)D(3). Fructose consumption prevented almost all of these lactation-induced increases, and reduced vitamin D receptor binding to promoter regions of Ca(2+) channels and binding proteins. Changes in 1,25-(OH)(2)D(3) level were tightly correlated with alterations in expression of 1α-hydroxylase but not with levels of parathyroid hormone and of 24-hydroxylase. Bone mineral density, content, and mechanical strength each decreased with lactation, but then fructose exacerbated these effects. When Ca(2+) requirements increase during lactation or similar physiologically challenging conditions, excessive fructose consumption may perturb Ca(2+) homeostasis because of fructose-induced reductions in synthesis of 1,25-(OH)(2)D(3).  相似文献   
77.
Aspects of renal physiology were examined to test the hypothesis that two cryptic species of the genus Mastomys (Mastomys natalensis and Mastomys coucha) are geographically separated by differences in aridity tolerance. Laboratory-bred females of each species were subjected to different levels of salinity in their water source (distilled water, 0.9% NaCl, and 1.5% NaCl; 10 conspecifics in each group) from weaning until sexual maturity. Individuals of the two species exhibited similar rates of water consumption and urine production. The salinity treatments caused sodium diuresis in both species, evident in increased urine volume, decreased osmolality and increased osmotic output. Urine concentration, kidney mass and kidney relative medullary area (RMA) did not differ between species. The results of our study do not support the hypothesis that differences in osmoregulatory ability separate these two cryptic species. Nor do they support the use of salt loading to elicit maximum urine concentrations in mammals.  相似文献   
78.
A novel bacterium was cultivated from an extreme thermal soil in Yellowstone National Park, Wyoming, USA, that at the time of sampling had a pH of 3.9 and a temperature range of 65–92 °C. This organism was found to be an obligate aerobic, non-spore-forming rod, and formed pink-colored colonies. Phylogenetic analysis of the 16S rRNA gene sequence placed this organism in a clade composed entirely of environmental clones most closely related to the phyla Chloroflexi and Thermomicrobia. This bacterium stained gram-positive, contained a novel fatty-acid profile, had cell wall muramic acid content similar to that of Bacillus subtilis (significantly greater than Escherichia coli), and failed to display a lipopolysaccharide profile in SDS-polyacrylamide gels that would be indicative of a gram-negative cell wall structure. Ultrastructure examinations with transmission electron microscopy showed a thick cell wall (approximately 34 nm wide) external to a cytoplasmic membrane. The organism was not motile under the culture conditions used, and electron microscopic examination showed no evidence of flagella. Genomic G+C content was 56.4 mol%, and growth was optimal at 67 °C and at a pH of 7.0. This organism was able to grow heterotrophically on various carbon compounds, would use only oxygen as an electron acceptor, and its growth was not affected by light. A new species of a novel genus is proposed, with YNP1T (T=type strain) being Thermobaculum terrenum gen. nov., sp. nov. (16S rDNA gene GenBank accession AF391972). This bacterium has been deposited in the American Type Culture Collection (ATCC BAA-798) and the University of Oregon Culture Collection of Microorganisms from Extreme Environments (CCMEE 7001).  相似文献   
79.
Ezrin-Radixin-Moesin (ERM) family proteins organize heterogeneous sub-plasma membrane protein scaffolds that shape membranes and their physiology. In Drosophila oocytes and imaginal discs, epithelial organization, fundamental to development and physiology, is devastated by the loss of Moesin. Here, we show that Moesin is crucial for Drosophila photoreceptor morphogenesis. Beyond its requirement for retinal epithelium integrity, Moesin is essential for the proper assembly of the apical membrane skeleton that builds the photosensitive membrane, the rhabdomere. Moesin localizes to the rhabdomere base, a dynamic locus of cytoskeletal reorganization and membrane traffic. Downregulation of Moesin through RNAi or genetic loss of function profoundly disrupts the membrane cytoskeleton and apical membrane organization. We find normal levels and distribution of Moesin in photoreceptors of a Moesin mutant previously regarded as protein null, suggesting alternative interpretations for studies using this allele. Our results show an essential structural role for Moesin in photoreceptor morphology.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号