首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1969篇
  免费   156篇
  2125篇
  2022年   13篇
  2021年   36篇
  2020年   15篇
  2019年   33篇
  2018年   24篇
  2017年   20篇
  2016年   32篇
  2015年   72篇
  2014年   91篇
  2013年   98篇
  2012年   145篇
  2011年   120篇
  2010年   89篇
  2009年   83篇
  2008年   129篇
  2007年   109篇
  2006年   130篇
  2005年   120篇
  2004年   114篇
  2003年   98篇
  2002年   113篇
  2001年   29篇
  2000年   16篇
  1999年   31篇
  1998年   39篇
  1997年   19篇
  1996年   14篇
  1995年   16篇
  1994年   12篇
  1993年   17篇
  1992年   19篇
  1991年   9篇
  1990年   12篇
  1989年   9篇
  1988年   9篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1984年   11篇
  1983年   13篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   12篇
  1978年   7篇
  1977年   9篇
  1976年   6篇
  1974年   10篇
  1973年   6篇
  1971年   4篇
排序方式: 共有2125条查询结果,搜索用时 15 毫秒
101.
The limited availability of human vascular endothelial cells (ECs) hampers research into EC function whilst the lack of precisely defined culture conditions for this cell type presents problems for addressing basic questions surrounding EC physiology. We aimed to generate endothelial progenitors from human pluripotent stem cells to facilitate the study of human EC physiology, using a defined serum-free protocol. Human embryonic stem cells (hESC-ECs) differentiated under serum-free conditions generated CD34+KDR+ endothelial progenitor cells after 6 days that could be further expanded in the presence of vascular endothelial growth factor (VEGF). The resultant EC population expressed CD31 and TIE2/TEK, took up acetylated low-density lipoprotein (LDL) and up-regulated expression of ICAM-1, PAI-1 and ET-1 following treatment with TNFα. Immunofluorescence studies indicated that a key mediator of vascular tone, endothelial nitric oxide synthase (eNOS), was localised to a perinuclear compartment of hESC-ECs, in contrast with the pan-cellular distribution of this enzyme within human umbilical vein ECs (HUVECs). Further investigation revealed that that the serum-associated lipids, lysophosphatidic acid (LPA) and platelet activating factor (PAF), were the key molecules that affected eNOS localisation in hESC-ECs cultures. These studies illustrate the feasibility of EC generation from hESCs and the utility of these cells for investigating environmental cues that impact on EC phenotype. We have demonstrated a hitherto unrecognized role for LPA and PAF in the regulation of eNOS subcellular localization.  相似文献   
102.
Elf5 is an epithelial-specific ETS factor. Embryos with a null mutation in the Elf5 gene died before embryonic day 7.5, indicating that Elf5 is essential during mouse embryogenesis. Elf5 is also required for proliferation and differentiation of mouse mammary alveolar epithelial cells during pregnancy and lactation. The loss of one functional allele led to complete developmental arrest of the mammary gland in pregnant Elf5 heterozygous mice. A quantitative mRNA expression study and Western blot analysis revealed that decreased expression of Elf5 correlated with the downregulation of milk proteins in Elf5(+/-) mammary glands. Mammary gland transplants into Rag(-/-) mice demonstrated that Elf5(+/-) mammary alveolar buds failed to develop in an Elf5(+/+) mammary fat pad during pregnancy, demonstrating an epithelial cell autonomous defect. Elf5 expression was reduced in Prolactin receptor (Prlr) heterozygous mammary glands, which phenocopy Elf5(+/-) glands, suggesting that Elf5 and Prlr are in the same pathway. Our data demonstrate that Elf5 is essential for developmental processes in the embryo and in the mammary gland during pregnancy.  相似文献   
103.
Certolizumab pegol (Cimzia®) is currently the only PEGylated anti-TNFα biologic approved for the treatment of rheumatoid arthritis and Crohn disease. The product, developed by UCB, is a humanized antigen-binding fragment (Fab’) of a monoclonal antibody that has been conjugated to polyethylene glycol. Certolizumab pegol was approved as a treatment for rheumatoid arthritis in the EU, US and Canada in 2009, and as a treatment for Crohn disease in Switzerland in 2007 and the US in 2008. Certolizumab pegol is entering into an increasingly competitive marketplace, especially in rheumatoid arthritis, but clinical data demonstrate benefits across a range of clinical, radiographic and patient reported outcomes.Key words: certolizumab pegol, rheumatoid arthritis, Crohn disease, TNFα, PEGylated, methotrexate  相似文献   
104.
Protein turnover through cullin-3 is tightly regulated by posttranslational modifications, the COP9 signalosome, and BTB/POZ-domain proteins that link cullin-3 to specific substrates for ubiquitylation. In this paper, we report how potassium channel tetramerization domain containing 6 (KCTD6) represents a novel substrate adaptor for cullin-3, effectively regulating protein levels of the muscle small ankyrin-1 isoform 5 (sAnk1.5). Binding of sAnk1.5 to KCTD6, and its subsequent turnover is regulated through posttranslational modification by nedd8, ubiquitin, and acetylation of C-terminal lysine residues. The presence of the sAnk1.5 binding partner obscurin, and mutation of lysine residues increased sAnk1.5 protein levels, as did knockdown of KCTD6 in cardiomyocytes. Obscurin knockout muscle displayed reduced sAnk1.5 levels and mislocalization of the sAnk1.5/KCTD6 complex. Scaffolding functions of obscurin may therefore prevent activation of the cullin-mediated protein degradation machinery and ubiquitylation of sAnk1.5 through sequestration of sAnk1.5/KCTD6 at the sarcomeric M-band, away from the Z-disk-associated cullin-3. The interaction of KCTD6 with ankyrin-1 may have implications beyond muscle for hereditary spherocytosis, as KCTD6 is also present in erythrocytes, and erythrocyte ankyrin isoforms contain its mapped minimal binding site.  相似文献   
105.
The interactive effect of grazing and soil resources on plant species richness and coexistence has been predicted to vary across spatial scales. When resources are not limiting, grazing should reduce competitive effects and increase colonisation and richness at fine scales. However, at broad scales richness is predicted to decline due to loss of grazing intolerant species. We examined these hypotheses in grasslands of southern Australia that varied in resources and ungulate grazing intensity since farming commenced 170 years ago. Fine-scale species richness was slightly greater in more intensively grazed upper slope sites with high nutrients but low water supply compared to those that were moderately grazed, largely due to a greater abundance of exotic species. At broader scales, exotic species richness declined with increasing grazing intensity whether nutrients or water supply were low or high. Native species richness declined at all scales in response to increasing grazing intensity and greater resource supply. Grazing also reduced fine-scale heterogeneity in native species richness and although exotics were also characterised by greater heterogeneity at fine scales, grazing effects varied across scales. In these grasslands patterns of plant species richness did not match predictions at all scales and this is likely to be due to differing responses of native and exotic species and their relative abundance in the regional species pool. Over the past 170 years intolerant native species have been eliminated from areas that are continually and heavily grazed, whereas transient, light grazing increases richness of both exotics and natives. The results support the observation that the processes and scales at which they operate differ between coevolved ungulate—grassland systems and those in transition due to recent invasion of herbivores and associated plant species.  相似文献   
106.
We previously showed that rat taste buds express several adenylyl cyclases (ACs) of which only AC8 is known to be stimulated by Ca2+. Here we demonstrate by direct measurements of cAMP levels that AC activity in taste buds is stimulated by treatments that elevate intracellular Ca2+. Specifically, 5 µM thapsigargin or 3 µM A-23187 (calcium ionophore), both of which increase intracellular Ca2+ concentration ([Ca2+]i), lead to a significant elevation of cAMP levels. This calcium stimulation of AC activity requires extracellular Ca2+, suggesting that it is dependent on Ca2+ entry rather than release from stores. With immunofluorescence microscopy, we show that the calcium-stimulated AC8 is principally expressed in taste cells that also express phospholipase C2 (i.e., cells that elevate [Ca2+]i in response to sweet, bitter, or umami stimuli). Taste transduction for sucrose is known to result in an elevation of both cAMP and calcium in taste buds. Thus we tested whether the cAMP increase in response to sucrose is a downstream consequence of calcium elevation. Even under conditions of depletion of stored and extracellular calcium, the cAMP response to sucrose stimulation persists in taste cells. The cAMP signal in response to monosodium glutamate stimulation is similarly unperturbed by calcium depletion. Our results suggest that tastant-evoked cAMP signals are not simply a secondary consequence of calcium modulation. Instead, cAMP and released Ca2+ may represent independent second messenger signals downstream of taste receptors. calcium-sensitive adenylyl cyclase; capacitative entry; cross talk; taste transduction  相似文献   
107.
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.  相似文献   
108.
The recombinant bacteria strain DPD2540, containing afabA::luxCDABE fusion, was used to detect the toxicity of various chemicals in this study. Membrane damaging agents such as phenol, ethanol, and cerulenin induced a rapid bioluminescent response from this strain. Other toxic agents, such as DNA-damaging or oxidative-damaging chemicals, showed a delayed bioluminescent response in which the maximum peak appeared over 150min after induction. This strain was also tested for measurement of toxicity in field samples such as wastewater and river water effluents.  相似文献   
109.
Alveolar epithelial type 2 cells (AEC2) isolated from hyperoxia-treated animals exhibit increases in both proliferation and DNA damage in response to culture. AEC2 express the zonula adherens proteins E-cadherin, -, - and -catenin, desmoglein, and pp120, as demonstrated by Western blotting. Immunohistochemical analysis of cultured AEC2 showed expression of E-cadherin on cytoplasmic membranes varying from strongly to weakly staining. When cultured AEC2 placed in suspension were labeled with fluorescent-tagged antibodies to E-cadherin, cells could be sorted into at least two subpopulations, either dim or brightly staining for this marker. With the use of antibody to E-cadherin bound to magnetic beads, cells were physically separated into E-cadherin-positive and -negative subpopulations, which were then analyzed for differences in proliferation and DNA damage. The E-cadherin-positive subpopulation contained the majority of damaged cells, was quiescent, and expressed low levels of telomerase activity, whereas the E-cadherin-negative subpopulation was undamaged, proliferative, and expressed high levels of telomerase activity.  相似文献   
110.
Two members of the AAA+ superfamily, ClpB and Hsp104, collaborate with Hsp70 and Hsp40 to rescue aggregated proteins. However, the mechanisms that elicit and underlie their protein-remodeling activities remain unclear. We report that for both Hsp104 and ClpB, mixtures of ATP and ATP-gammaS unexpectedly unleash activation, disaggregation and unfolding activities independent of cochaperones. Mutations reveal how remodeling activities are elicited by impaired hydrolysis at individual nucleotide-binding domains. However, for some substrates, mixtures of ATP and ATP-gammaS abolish remodeling, whereas for others, ATP binding without hydrolysis is sufficient. Remodeling of different substrates necessitates a diverse balance of polypeptide 'holding' (which requires ATP binding but not hydrolysis) and unfolding (which requires ATP hydrolysis). We suggest that this versatility in reaction mechanism enables ClpB and Hsp104 to reactivate the entire aggregated proteome after stress and enables Hsp104 to control prion inheritance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号