首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1320篇
  免费   112篇
  2023年   6篇
  2022年   15篇
  2021年   33篇
  2020年   12篇
  2019年   18篇
  2018年   31篇
  2017年   10篇
  2016年   25篇
  2015年   61篇
  2014年   61篇
  2013年   87篇
  2012年   93篇
  2011年   88篇
  2010年   65篇
  2009年   46篇
  2008年   73篇
  2007年   85篇
  2006年   64篇
  2005年   64篇
  2004年   60篇
  2003年   57篇
  2002年   54篇
  2001年   46篇
  2000年   43篇
  1999年   30篇
  1998年   10篇
  1997年   15篇
  1996年   9篇
  1995年   11篇
  1994年   10篇
  1993年   10篇
  1992年   18篇
  1991年   13篇
  1990年   10篇
  1989年   13篇
  1988年   7篇
  1987年   6篇
  1986年   10篇
  1985年   4篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
排序方式: 共有1432条查询结果,搜索用时 15 毫秒
161.
162.
163.
We have analyzed the mitotic function of SENP6, a small ubiquitin-like modifier (SUMO) protease that disassembles conjugated SUMO-2/3 chains. Cells lacking SENP6 showed defects in spindle assembly and metaphase chromosome congression. Analysis of kinetochore composition in these cells revealed that a subset of proteins became undetectable on inner kinetochores after SENP6 depletion, particularly the CENP-H/I/K complex, whereas other changes in kinetochore composition mimicked defects previously reported to result from CENP-H/I/K depletion. We further found that CENP-I is degraded through the action of RNF4, a ubiquitin ligase which targets polysumoylated proteins for proteasomal degradation, and that SENP6 stabilizes CENP-I by antagonizing RNF4. Together, these findings reveal a novel mechanism whereby the finely balanced activities of SENP6 and RNF4 control vertebrate kinetochore assembly through SUMO-targeted destabilization of inner plate components.  相似文献   
164.
Two coordination polymers of cadmium with formula [Cd(pyp)2(H2O)2]n (1) and {[Cd2(pyzca)3(atr)(H2O)]·H2O}n (2) [pypH = 3-pyridinepropionic acid, pyzcaH = 2-pyrazinecarboxylic acid and atrH = 5-aminotetrazole] have been synthesized and structurally characterized by X-ray single crystal diffraction analysis. Both complexes display 2D structures that extend into a 3D network by means of hydrogen bonding. The crystal packing of both complexes is reinforced by π-π interactions between adjacent aromatic rings. The fluorescence study indicates intraligand π-π* charge transfer, which is the reason for emission in both the complexes.  相似文献   
165.
The interaction of trimannoside, α?benzyl 3, 6‐di‐O‐(α‐D ‐mannopyranosyl)‐α‐D ‐mannopyranoside, 1 with ASAI (Allium sativam agglutinin I, garlic lectin) was studied to reveal the conformational preferences of this ligand in bound‐state and detailed binding mode at atomic level. The binding phenomenon was then compared with another well‐known mannose‐binding lectin, ConA (Concanavalin A). Structural studies of the ligand in free state were done using NMR spectroscopy and Molecular Dynamics simulations. It is found that the substituted‐trimannoside can undergo conformational transitions in solution, with one major and one minor conformation per glycosidic linkage (α 1→3 and α 1→6). On the other hand in the bound‐state only one of the two major conformations was significantly populated. The role of phenyl ring in the binding process was explored. An extended binding site was observed for the trimannoside in ASAI utilizing the aromatic substituent, which is not seen in ConA. Binding data from difference absorption spectroscopy supported this fact that the binding of benzyl‐substituted ligand is tighter with ASAI than ConA. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 952–967, 2010.  相似文献   
166.
Alcoholism can result in fatty liver that can progress to steatohepatitis, cirrhosis, and liver cancer. Mice fed alcohol develop fatty liver through endocannabinoid activation of hepatic CB1 cannabinoid receptors (CB1R), which increases lipogenesis and decreases fatty acid oxidation. Chronic alcohol feeding also up-regulates CB1R in hepatocytes in vivo, which could be replicated in vitro by co-culturing control hepatocytes with hepatic stellate cells (HSC) isolated from ethanol-fed mice, implicating HSC-derived mediator(s) in the regulation of hepatic CB1R (Jeong, W. I., Osei-Hyiaman, D., Park, O., Liu, J., Bátkai, S., Mukhopadhyay, P., Horiguchi, N., Harvey-White, J., Marsicano, G., Lutz, B., Gao, B., and Kunos, G. (2008) Cell Metab. 7, 227–235). HSC being a rich source of retinoic acid (RA), we tested whether RA and its receptors may regulate CB1R expression in cultured mouse hepatocytes. Incubation of hepatocytes with RA or RA receptor (RAR) agonists increased CB1R mRNA and protein, the most efficacious being the RARγ agonist CD437 and the pan-RAR agonist TTNPB. The endocannabinoid 2-arachidonoylglycerol (2-AG) also increased hepatic CB1R expression, which was mediated indirectly via RA, because it was absent in hepatocytes from mice lacking retinaldehyde dehydrogenase 1, the enzyme catalyzing the generation of RA from retinaldehyde. The binding of RARγ to the CB1R gene 5′ upstream domain in hepatocytes treated with RAR agonists or 2-AG was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift and antibody supershift assays. Finally, TTNPB-induced CB1R expression was attenuated by small interfering RNA knockdown of RARγ in hepatocytes. We conclude that RARγ regulates CB1R expression and is thus involved in the control of hepatic fat metabolism by endocannabinoids.  相似文献   
167.
The hydrophobic fluorescent probe Prodan binds to the self-associating domain of spectrin with 1:1 stoichiometry. A model of the self-associating domain was generated based on its homology with other domains of spectrin. Prodan was then docked onto the model, and several sites with low interaction energy were identified. To verify whether the binding of Prodan is specific towards the self-associating domain of spectrin, it was docked on to several other domains of spectrin, having a known three-dimensional structure. Analysis of the docking results suggests that the binding of Prodan to the self-associating domain of spectrin will involve hydrophobic and hydrophilic groups of Prodan. The results clearly indicate the preference of Prodan for a particular binding site of the self-associating domain.  相似文献   
168.
Early investigators reported the occurrence of unidentified protein factors in biological fluids that may regulate sperm motility essential for fertility potential. This study reports for the first time purification of a forward motility stimulating protein (FMSF-I), to apparent homogeneity, from a biological fluid (buffalo blood serum) and its characterization. FMSF-I is the major motility protein of buffalo serum: a rich source of the factor. FMSF showed high protein specificity and affinity for activating forward motility of goat cauda epididymal spermatozoa. The motility promoter at 0.5 microM level showed maximal activity when nearly 60%-70% of spermatozoa expressed forward motility. It is a 66 kDa monomeric acidic protein rich in aspartate, glutamate, and leucine with isoelectric point of 3.7. FMSF: a Mg2+ -dependent protein binds to concanavalin A-agarose and the glycoprotein nature of FMSF has been confirmed by PAS staining. The factor lost activity completely when treated with alpha-mannosidase showing that the sugar part of the protein is essential for its biological activity. FMSF has no species specificity for its motility-activating potential. Sperm surface has specific receptors of FMSF, which is strongly immunogenic. The factor is present in testis and epididymis although liver is its richest source. Motility promoting efficacy of FMSF is markedly higher than the well-known non-protein motility activators: theophylline and bicarbonate or their combination. FMSF is a physiological activator of sperm motility and as a slaughterhouse byproduct it has potentiality for solving some of the problems of animal breeding, conservation of endangered species, and human infertility: a global social problem.  相似文献   
169.
This article deals with the relationship between vocabulary (total number of distinct oligomers or “words”) and text-length (total number of oligomers or “words”) for a coding DNA sequence (CDS). For natural human languages, Heaps established a mathematical formula known as Heaps' law, which relates vocabulary to text-length. Our analysis shows that Heaps' law fails to model this relationship for CDSs. Here we develop a mathematical model to establish the relationship between the number of type of words (vocabulary) and the number of words sampled (text-length) for CDSs, when non-overlapping nucleotide strings with the same length are treated as words. We use tangent-hyperbolic function, which captures the saturation property of vocabulary. Based on the parameters of the model, we formulate a mathematical equation, known as “equation of word organization”, whose parameters essentially indicate that nucleotide organization of coding sequences are different from one another. We also compare the word organization of CDSs with the random word distribution and conclude that a CDS is neither similar to a natural human language nor to a random one. Moreover, these sequences have their unique nucleotide organization and it is completely structured for specific biological functioning. IM and AS contributed equally to this work.  相似文献   
170.
Pyruvate carboxylase (PYC) is an ecologically, medically, and industrially important enzyme. It is widespread in all three domains of life, the archaea, bacteria, and eukarya. PYC catalyzes ATP-dependent carboxylation of pyruvate to oxaloacetate. Detailed structure-function studies of this enzyme have been hampered due to the unavailability of a facile recombinant overexpression system. Except for the alpha4 enzyme from a thermophilic Bacillus species, Escherichia coli has been unsuitable for overexpression of PYCs. We show that a Pseudomonas aeruginosa strain carrying the T7 polymerase gene can serve as a host for the overexpression of Mycobacterium smegmatis alpha4 PYC and Pseudomonas aeruginosa alpha4beta4 PYC under the control of the T7 promoter from a broad-host-range conjugative plasmid. Overexpression occurred both in aerobic (LB medium) and nitrate-respiring anaerobic (LB medium plus glucose and nitrate) cultures. The latter system presented a simpler option because it involved room temperature cultures in stationary screw-cap bottles. We also developed a P. aeruginosa Deltapyc strain that allowed the expression of recombinant PYCs in the absence of the native enzyme. Since P. aeruginosa can be transformed genetically and lysed for cell extract preparation rather easily, our system will facilitate site-directed mutagenesis, kinetics, X-ray crystallographic, and nuclear magnetic resonance-based structure-function analysis of PYCs. During this work we also determined that, contrary to a previous report (C. K. Stover et al., Nature 406:959-964, 2000), the open reading frame (ORF) PA1400 does not encode a PYC in P. aeruginosa. The alpha4beta4 PYC of this organism was encoded by the ORFs PA5436 and PA5435.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号