首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  1999年   1篇
  1974年   2篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
21.
NADH cytochrome b5 oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b5 (b5), CHORD-SGT1 (CS), and cytochrome b5 reductase (b5R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b5 and b5R domains (Ncb5or-b5 and Ncb5or-b5R, respectively) and compared them with human microsomal b5 (Cyb5A) and b5R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b5 reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His89 and His112, consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b5 family shown to have such a heme environment. Like other b5 family members, Ncb5or-b5 has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b5 differs from Cyb5A with respect to location of the second heme ligand (His112) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b5R to Ncb5or-b5 is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b5 and b5R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b5R domains suggest that the CS domain facilitates docking of the b5 and b5R domains. Trp114 is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b5R domain to the b5 domain.  相似文献   
22.
Chlamydia trachomatis (C.t) is a gram-negative obligate intracellular bacteria, which is a major causative of infectious blindness and sexually transmitted diseases. A surge in multidrug resistance among chlamydial species has posed a challenge to adopt alternative drug targeting strategies. Recently, in C.t, L,L-diaminopimelate aminotransferase (CtDAP-AT) is proven to be a potential drug target due its essential role in cell survival and host nonspecificity. Hence, in this study, a multilevel precision-based virtual screening of CtDAP-AT was performed to identify potential inhibitors, wherein, an integrative stringent scoring and filtration were performed by coupling, glide docking score, binding free energy, ADMET (absorption, distribution, metabolism, and excretion, toxicity) prediction, density functional theory (quantum mechanics), and molecular dynamics simulation (molecular mechanics). On cumulative analysis, NSC_5485 (1,3-bis((7-chloro-4-quinolinyl)amino)-2-propanol) was found to be the most potential lead, as it showed higher order significance in terms of binding affinity, bonded interactions, favorable ADMET, chemical reactivity, and greater stabilization during complex formation. This is the first report on prioritization of small molecules from National Cancer Institute (NCI) and Maybridge data sets (341 519 compounds) towards targeting CtDAP-AT. Thus, the proposed compound shall aid in effective combating of a broad spectrum of C.t infections as it surpassed all the levels of prioritization.  相似文献   
23.
The fabrication of reliable, green chemistry processes for nanomaterial synthesis is an important aspect of nanotechnology. The biosynthesis of single-pot room-temperature reduction of aqueous chloroaurate ions by Streptomyces hygroscopicus cells has been reported to facilitate the development of an industrially viable greener methodology for the synthesis of technologically important gold nanoparticles (AuNPs). Multidimensional AuNPs are generated via the manipulation of key growth parameters, including solution pH and reaction time. The synthesized nanostructures are characterized by UV/Vis and energy dispersive X-ray analysis studies. Particle morphology is characterized by HRTEM, FE-SEM and BioAFM. Additionally, we have demonstrated the electrochemical and antibacterial properties of AuNPs via cyclic voltammetry analysis and a minimal inhibitory concentration assay. Owing to the drawbacks of chemical synthesis, a biological synthesis method has been developed to generate biocompatible, inexpensive and eco-friendly size-controlled nanoparticles.  相似文献   
24.
The fungal strains Graphium putredinis and Trichoderma harzianum were selected as parents for fusant development. Protoplasts were isolated using the combination of lysing enzymes Novozym 234 and cellulase with 0.6 M KCl as osmotic stabilizer. The optimum conditions for release of viable protoplasts from the fungal mycelium viz. age of the mycelium, lytic enzymes, osmotic stabilizers, pH, incubation period and regeneration medium were determined. Intergeneric protoplast fusion was carried out using 50% polyethylene glycol with calcium chloride (CaCl2) and glycine buffer and the conditions for effective protoplast fusion, viz. fusogen, osmotic stabilizer, pH, incubation period and regeneration medium were optimized. At optimum conditions, the regeneration frequency of the fused protoplasts on potato dextrose agar (PDA) medium and fusion frequency were calculated. The regeneration frequency on non-selective (PDA) and selective media (PDA amended with starch) was determined for the parental and fusant strains in which, fusant showed a higher rate of regeneration. Fusant formation was confirmed by morphological markers (colony morphology and spore size and shape) and genetical markers like, mycelial protein pattern, restriction digestion pattern and random amplified polymorphic DNA (RAPD) analysis. The efficiency of these parental strains and their intergeneric fusant in the production of hydrolytic enzymes – amylases (treatment plant for sago factory effluent), cellulases (bioethanol), xylanases (bleaching agents for waste paper pulp) and proteases (additives in commercial detergents) – have probable applications in various industrial processes.  相似文献   
25.
Certain progenies of Malling apple rootstocks (Malus pumila) have been reported to segregate for a virescent trait: leaves are chlorotic at germination or bud break but turn green as the season progresses. The M432 rootstock mapping progeny, from which a linkage map has recently been elaborated with 323 simple sequence repeat (SSR) markers and 3,069 single nucleotide polymorphism (SNP) markers, also segregates for this phenotype. In this investigation, 188 seedlings were scored and, on the basis of a 3:1 segregation, virescence was attributed to the recessive gene (vir) for which the two parents, M.27 and M.116, are heterozygous. At least seven of 28 Malling rootstocks are heterozygous for this apparently deleterious trait. With the published marker data the gene was mapped to linkage group 12, tightly flanked by the SSR CH01g12 and the SNP marker 475880474, and was located in a physical interval of 2.36 Mb on the Golden Delicious genome sequence. A PCR-based marker was developed from the SNP and along with the SSR was scored in a set of Malus rootstock accessions. The screening of this collection demonstrated that those accessions known to be heterozygous at the vir locus all carried the 152 allele of the SSR and the G allele of the SNP, whilst a virescent accession was homozygous for the alleles. The results we present here could help predict the genotype of apple rootstocks at the vir locus, assist in the fine mapping of the vir locus to identify potential candidate genes for the trait and also aid rootstock breeding.  相似文献   
26.
Cyclophosphamide (CP), an alkylating agent widely used in cancer chemotherapy causes cardiac membrane damage. Lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate possess a wide range of medicinal properties. The effect of lupeol and its ester was evaluated in CP induced alterations in cardiac electrolytes in rats. Male albino rats of Wistar strain were categorized into 6 groups. Group I served as control. Rats in groups II, V and VI were injected intraperitoneally with a single dose of CP (200 mg/kg body weight) dissolved in saline. CP treated groups V and VI received lupeol and lupeol linoleate (50 mg/kg body weight) respectively, dissolved in olive oil for 10 days by oral gavage. At the end of the experimental period, urinary risk factors, activities of ATPases and electrolytes were measured using standard procedures. CP administered rats showed a significant decrease (P < 0.001) in the activities of ATPases. It was associated with significant alterations (P < 0.001) of electrolytes both in serum and cardiac tissue. The levels of urea, uric acid and creatinine were also significantly (P < 0.001) altered in the serum and urine. Lupeol and its ester showed reversal of the above alterations induced by CP. These findings demonstrate that the supplementation with lupeol and its ester could preserve membrane permeability, highlighting their protective effect against CP induced cardiotoxicity.  相似文献   
27.
Cyclophosphamide (CP), one of the most widely prescribed antineoplastic drugs could cause a lethal cardiotoxicity. The present study is aimed at evaluating the role of DL-alpha-lipoic acid (LA) in oxidative cardiac damage induced by CP. Adult male Wistar rats were divided into four treatment groups. Two groups received single intraperitoneal injection of CP (200 mg/kg BW) to induce cardiotoxicity, one of these groups received LA treatment (25 mg/kg BW for 10 days). A vehicle treated control group and a LA drug control were also included. Cardiotoxicity, evident from increased activities of serum creatine phosphokinase, lactate dehydrogenase, aspartate transaminase and alanine transaminase in CP administered rats, was reversed by LA treatment. CP administered rats showed abnormal levels of enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase) and non-enzymic antioxidants (glutathione, vitamin C and vitamin E) along with high malondialdehyde levels. However, normalized lipid peroxidation and antioxidant defenses were reported in the LA treated rats. These findings highlight the efficacy of LA as a cytoprotectant in CP induced cardiotoxicity.  相似文献   
28.

Background

Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model.

Methods

Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check.

Results

A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated.

Conclusions

For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart rate has an important influence on the pharmacokinetics of propofol during pregnancy. Much lower propofol concentration in the fetus compared to maternal concentrations explain limited placental transfer in in-vivo paired model, and less direct fetal cardiac depression we observed earlier with propofol supplemented inhalational anesthesia compared to higher dose inhalational anesthesia in humans and sheep.  相似文献   
29.
Summary Phage P22-mutants with increased or decreased ability to produce transducing particles (HT-1 and NT-mutants) were submitted to mapping experiments. The gene responsible for HT-phenotype was found to be allelic to gene 3 of the P22 linkage map. For the NT-phenotype different genes were identified: gene 1 (or a new gene extremely close to it), gene 5, gene 8 and a new gene between genes 3 and 19.  相似文献   
30.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号