首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   27篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   3篇
  2018年   16篇
  2017年   7篇
  2016年   19篇
  2015年   20篇
  2014年   21篇
  2013年   27篇
  2012年   28篇
  2011年   32篇
  2010年   23篇
  2009年   13篇
  2008年   26篇
  2007年   13篇
  2006年   8篇
  2005年   16篇
  2004年   8篇
  2003年   12篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   9篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有376条查询结果,搜索用时 375 毫秒
21.
Exposure of living systems to radiation results in a wide assortment of lesions, the most significant of is damage to genomic DNA which alter specific cell functions including cell proliferation. The radiation induced DNA damage investigation is one of the important area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes such as damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2 Gy proton exposed mouse brain tissues as compared to control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed cells undergo severe DNA damage which in turn destabilize the chromatin stability.  相似文献   
22.
The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29–167 mg kg?1 dw), as well as As transfer factor (4–45%). Grains retained the least level of As (0.7–3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05–0.12 mg kg?1 dw), whereas that of As was high (0.4–1.68 mg kg?1 dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas.  相似文献   
23.
Glucose dehydrogenase (GDH) of Gram-negative bacteria is a membrane bound enzyme catalyzing the oxidation of glucose to gluconic acid and is involved in the solubilization of insoluble mineral phosphate complexes. A 2.4 kb glucose dehydrogenase gene (gcd) of Enterobacter asburiae sharing extensive homology to the gcd of other enterobacteriaceae members was cloned in a PCR-based directional genome walking approach and the expression confirmed in Escherichia coli YU423 on both MacConkey glucose agar and hydroxyapatite (HAP) containing media. Mineral phosphate solubilization by the cloned E. asburiae gcd was confirmed by the release of significant amount of phosphate in HAP containing liquid medium. gcd was over expressed in E. coli AT15 (gcd::cm) and the purified recombinant protein had a high affinity to glucose, and oxidized galactose and maltose with lower affinities. The enzyme was highly sensitive to heat and EDTA, and belonged to Type I, similar to GDH of E. coli.  相似文献   
24.
The stable signal peptide (SSP) of the GP-C envelope glycoprotein of the Junín arenavirus plays a critical role in trafficking of the GP-C complex to the cell surface and in its membrane fusion activity. SSP therefore may function on both sides of the lipid membrane. In this study, we have investigated the membrane topology of SSP by confocal microscopy of cells treated with the detergent digitonin to selectively permeabilize the plasma membrane. By using an affinity tag to mark the termini of SSP in the properly assembled GP-C complex, we find that both the N and C termini reside in the cytosol. Thus, SSP adopts a bitopic topology in which the C terminus is translocated from the lumen of the endoplasmic reticulum to the cytoplasm. This model is supported by (i) the presence of two conserved hydrophobic regions in SSP (hphi1 and hphi2) and (ii) our previous demonstration that lysine-33 in the ectodomain loop is essential for pH-dependent membrane fusion. Moreover, we demonstrate that the introduction of a charged side chain or single amino acid deletion in the membrane-spanning hphi2 region significantly diminishes SSP association in the GP-C complex and abolishes membrane fusion activity. Taken together, our results suggest that bitopic membrane insertion of SSP is centrally important in the assembly and function of the tripartite GP-C complex.  相似文献   
25.
A series of 1-substituted-3-(6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)pyrazoles 14a-ae, 16a, 16b, and 21a-c has been prepared and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. The 4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-N-(4-methoxyphenyl)-3-(6-methylpyridin-2-yl)-1H-pyrazole-1-carbothioamide (14n) inhibited ALK5 phosphorylation with IC(50) value of 0.57 nM and showed 94% inhibition at 100 nM in a luciferase reporter assay using HaCaT cells permanently transfected with p3TP-luc reporter construct.  相似文献   
26.
Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome. SNPs may be linked to genetic predispositions, frank disorders or adverse drug responses, or they may serve as genetic markers in linkage disequilibrium analysis. Thus far, established SNP detection techniques have utilized enzymes to meet the sensitivity and specificity requirements needed to overcome the high complexity of the human genome. Herein, we present for the first time a microarray-based method that allows multiplex SNP genotyping in total human genomic DNA without the need for target amplification or complexity reduction. This direct SNP genotyping methodology requires no enzymes and relies on the high sensitivity of the gold nanoparticle probes. Specificity is derived from two sequential oligonucleotide hybridizations to the target by allele-specific surface-immobilized capture probes and gene-specific oligonucleotide-functionalized gold nanoparticle probes. Reproducible multiplex SNP detection is demonstrated with unamplified human genomic DNA samples representing all possible genotypes for three genes involved in thrombotic disorders. The assay format is simple, rapid and robust pointing to its suitability for multiplex SNP profiling at the ‘point of care’.  相似文献   
27.
28.
alpha1(IV)NC1, a cleavage fragment of the carboxy terminal non-collagenous human alpha1 chain of type IV collagen, is derived from the extracellular matrix specifically by MMP-2. Recently we determined the in vitro and in vivo anti-angiogenic activity of alpha1(IV)NC1 and presently, its role in cancer therapy is under evaluation. To characterize alpha1(IV)NC1 as a potential candidate for drug development and to test its efficacy in animal models, an effective method to produce a purified active form of alpha1(IV)NC1 is needed. In the present study, expression of alpha1(IV)NC1 in Sf9 cells using baculovirus expression system was discussed, this method was found to be effective in the production of a functionally active soluble form of the recombinant protein. The purified protein showed its characteristic activities such as inhibiting cell proliferation, migration, and tube formation in endothelial cells.  相似文献   
29.
Radiation affects several cellular and molecular processes, including double strand breakage and modifications of sugar moieties and bases. In outer space, protons are the primary radiation source that poses a range of potential health risks to astronauts. On the other hand, the use of proton irradiation for tumor radiation therapy is increasing, as it largely spares healthy tissues while killing tumor tissues. Although radiation-related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton irradiation remain poorly understood. Therefore, in this study, we irradiated rat lung epithelial cells with different doses of protons and investigated their effects on cell proliferation and death. Our data show an inhibition of cell proliferation in proton-irradiated cells with a significant dose-dependent activation and repression of reactive oxygen species and antioxidants glutathione and superoxide dismutase, respectively, compared with control cells. In addition, the activities of apoptosis-related genes such as caspase-3 and -8 were induced in a dose-dependent manner with corresponding increased levels of DNA fragmentation in proton-irradiated cells compared with control cells. Together, our results show that proton irradiation alters oxidant and antioxidant levels in cells to activate the apoptotic pathway for cell death.  相似文献   
30.
Protein pattern, ammonia content, glutamine synthetase activity, lipid peroxidation, superoxide dismutase, catalase, peroxidase and peroxidase isoforms were studied in the leaves and roots of 7-d-old peanut (Arachis hypogaea L. cv. JL-24) seedlings treated by 25, 100 and 250 μM jasmonic acid (JA). SDS-PAGE protein profile of leaves and roots after JA application showed a significant increase in 18, 21, 30, 45, 47 and 97.4 kDa proteins and significant decrease in 22 and 36 kDa proteins. Pathogenesis related PR-18 was specific in leaves at 250 μM JA and PR-21 have cross reacted differently with 21 and 30 kDa proteins in leaves and roots treated by all JA concentrations. Further, the immunoblot analysis with glutamine synthetase, GS-45 antibodies revealed a specific cross reaction with 45 and 47 kDa proteins of both control and JA treated leaves, however, higher at 100 and 250 μM JA treated leaves than control ones. Further, the malondialdehyde (MDA) content significantly increased in leaves and roots treated with JA, indicated membrane damage with JA treatments that led to the generation of peroxidation products. The peroxidase isozymic pattern showed two specific isoforms. Besides, the activities of SOD and catalase were significantly elevated in JA treated leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号