首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   49篇
  2023年   3篇
  2022年   4篇
  2021年   14篇
  2020年   5篇
  2019年   14篇
  2018年   13篇
  2017年   9篇
  2016年   21篇
  2015年   28篇
  2014年   35篇
  2013年   47篇
  2012年   46篇
  2011年   37篇
  2010年   28篇
  2009年   28篇
  2008年   38篇
  2007年   43篇
  2006年   45篇
  2005年   36篇
  2004年   32篇
  2003年   34篇
  2002年   24篇
  2001年   12篇
  2000年   8篇
  1999年   13篇
  1998年   11篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1991年   4篇
  1990年   7篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有692条查询结果,搜索用时 31 毫秒
81.
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity. Among 2'-fluorinated compounds, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-d-arabinofuranosyl)-5-ethyluracil (13) exhibited promising activity against M. bovis and Mtb alone, and showed synergism when combined with isoniazid. The most active compound emerging from these studies, 1-(β-d-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (21) inhibited Mtb (H37Ra) (MIC(50)=0.5 μg/mL) and M. bovis (MIC(50)=0.5 μg/mL) at low concentrations, and was ten times more potent against Mtb (H37Ra) than cycloserine (MIC(50)=5.0 μg/mL), a second line drug. It also showed an additive effect when combined with isoniazid. Compound 21 retained sensitivity against a rifampicin-resistant (H37Rv) strain of Mtb (MIC(50)=1 μg/mL) at concentrations similar to that for a rifampicin-sensitive (H37Rv) strain, suggesting that it has no cross-resistance to a first-line anti-TB drug. In addition, the replication of M. avium was also inhibited by 21 (MIC(50)=10 μg/mL). No cellular toxicity of 13 or 21 was observed up to the highest concentration tested (CC(50)>100 μg/mL). These observations offer promise for a new drug treatment regimen to augment and complement the current chemotherapy of TB.  相似文献   
82.
Phosphodiesterase 4B (PDE4B) is an important therapeutic target for asthma and chronic obstructive pulmonary disease. To identify PDE4 subtype-specific compounds using high-throughput assays, full-length recombinant PDE4 proteins are needed in bulk quantity. In the present study, full-length human PDE4B2 was expressed in the cellular slime mould Dictyostelium discoideum (Dd). A cell density of 2 x 10(7) cells/mL was obtained and up to 1 mg/L recombinant PDE4B2 was purified through Ni-NTA affinity chromatography. The expressed protein was soluble and its activity was comparable to PDE4B2 protein expressed in mammalian cells (K(m)=1.7 microM). The functional significance of the Dd expression system is supported by the demonstration that, in concert with proteins expressed in mammalian systems, there are no major changes in the affinity for PDE4B2 inhibitors and substrates. These findings thus provide the first evidence that Dd can be utilized for the expression and purification of functionally active full-length human PDE4B2 in large amounts required for high-throughput screening of pharmacologically active compounds against this therapeutic target.  相似文献   
83.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system.  相似文献   
84.
Endocytosis of the nicotinic acetylcholine receptor (AChR) is a proposed major mechanism of neuromodulation at neuromuscular junctions and in the pathology of synapses in the central nervous system. We show that binding of the competitive antagonist alpha-bungarotoxin (alphaBTX) or antibody-mediated cross-linking induces the internalization of cell surface AChR to late endosomes when expressed heterologously in Chinese hamster ovary cells or endogenously in C2C12 myocytes. Internalization occurs via sequestration of AChR-alphaBTX complexes in narrow, tubular, surface-connected compartments, which are indicated by differential surface accessibility of fluorescently tagged alphaBTX-AChR complexes to small and large molecules and real-time total internal reflection fluorescence imaging. Internalization occurs in the absence of clathrin, caveolin, or dynamin but requires actin polymerization. alphaBTX binding triggers c-Src phosphorylation and subsequently activates the Rho guanosine triphosphatase Rac1. Consequently, inhibition of c-Src kinase activity, Rac1 activity, or actin polymerization inhibits internalization via this unusual endocytic mechanism. This pathway may regulate AChR levels at ligand-gated synapses and in pathological conditions such as the autoimmune disease myasthenia gravis.  相似文献   
85.
Processing of DNA replication and repair intermediates is a critical aspect of genome stability maintenance. The coordinated action of RecQ-like helicases with structure-specific nucleases such as Flap Endonuclease 1 plays an important role in the processing of certain DNA structures associated with the replication fork, DNA repair, or telomeres. We will summarize our current understanding of how and in what context these interactions take place, with a particular emphasis on the mechanisms of RecQ helicases in processing of key DNA replication and repair intermediates by their protein interactions with FEN-1 and related structure-specific nucleases.  相似文献   
86.
87.
Although essentially conserved, the N-terminal nucleotide-binding domain (NBD) of Cdr1p and other fungal transporters has some unique substitutions of amino acids which appear to have functional significance for the drug transporters. We have previously shown that the typical Cys193 in Walker A as well as Trp326 and Asp327 in the Walker B of N-terminal NBD (NBD-512) of Cdr1p has acquired unique roles in ATP binding and hydrolysis. In the present study, we show that due to spatial proximity, fluorescence resonance energy transfer (FRET) takes place between Trp326 of Walker B and MIANS [2-(4-maleimidoanilino) naphthalene-6-sulfonic acid] on Cys193 of Walker A motif. By exploiting FRET, we demonstrate how these critical amino acids are positioned within the nucleotide-binding pocket of NBD-512 to bind and hydrolyze ATP. Our results show that both Mg2+ coordination and nucleotide binding contribute to the formation of the active site. The entry of Mg2+ into the active site causes the first large conformational change that brings Trp326 and Cys193 in close proximity to each other. We also show that besides Trp326, typical Glu238 in the Q-loop also participates in coordination of Mg2+ by NBD-512. A second conformational change is induced when ATP, but not ADP, docks into the pocket. Asn328 does sensing of the γ-phosphate of the substrate in the extended Walker B motif, which is essential for the second conformational change that must necessarily precede ATP hydrolysis. Taken together our results imply that the uniquely placed residues in NBD-512 have acquired critical roles in ATP catalysis, which drives drug extrusion.  相似文献   
88.
Plants are a nearly unlimited source of phytochemicals. The plants produce various secondary metabolites, which are useful in its interaction with the environment, various stress factors and development of resistance against pathogen attack. A wide array of external stimuli are capable of triggering changes in the plant cell which leads to a cascade of reactions, ultimately resulting in the formation and accumulation of secondary metabolites which helps the plant to overcome the stress factors. The biotic and abiotic elicitors can result in an enhancement of the secondary metabolite production. The stimuli are perceived by receptors, which then result in the activation of the secondary messengers. These then transmit the signals into the cell through the signal transduction pathways leading to gene expression and biochemical changes. There is interplay of the signaling molecules also which regulates the entire pathway. This review is oriented towards the factors, which influence signal transduction pathway(s) with special reference to polyamines, calcium, jasmonates, salicylates, nitric oxide and ethylene. The interplay of these components to elicit a defense response is discussed. Molecular aspects of disease resistance and regulation of plant secondary metabolism has also been presented.  相似文献   
89.
Entamoeba dispar andEntamoeba histolytica are now recognized as two distinct species-the former being nonpathogenic to humans. We had earlier studied the organization of ribosomal RNA genes inE. histolytica. Here we report the analysis of ribosomal RNA genes inE. dispar. The rRNA genes ofE. dispar, like their counterpart inE. histolytica are located on a circular rDNA molecule. From restriction map analysis, the size ofE. dispar rDNA circle was estimated to be 24·4 kb. The size was also confirmed by linearizing the circle withBsaHI, and by limited DNAseI digestion. The restriction map of theE. dispar rDNA circle showed close similarity to EhR1, the rDNA circle ofE. histolytica strain HM-1:IMSS which has two rDNA units per circle. The various families of short tandem repeats found in the upstream and downstream intergenic spacers (IGS) of EhR1 were also present inE. dispar. Partial sequencing of the cloned fragments ofE. dispar rDNA and comparison with EhR1 revealed only 2·6% to 3·8% sequence divergence in the IGS. The region Tr and the adjoiningPvuI repeats in the IGS of EhR1, which are missing in thoseE. histolytica strains that have one rDNA unit per circle, were present in theE. dispar rDNA circle. Such close similarity in the overall organization and sequence of the IGS of rDNAs of two different species is uncommon. In fact the spacer sequences were only slightly more divergent than the 18S rRNA gene sequence which differs by 1·6% in the two species. The most divergent sequence betweenE. histolytica andE. dispar was the internal transcribed spacer, ITS2. Therefore, it was concluded that probes derived from the ITS1 and ITS 2 sequences would be more reliable and reproducible than probes from the IGS regions used earlier for identifying these species.  相似文献   
90.
Ligand binding at the extracellular domain of pentameric ligand-gated ion channels initiates a relay of conformational changes that culminates at the gate within the transmembrane domain. The interface between the two domains is a key structural entity that governs gating. Molecular events in signal transduction at the interface are poorly defined because of its intrinsically dynamic nature combined with functional modulation by membrane lipid and water vestibules. Here we used electron paramagnetic resonance spectroscopy to delineate protein motions underlying Gloeobacter violaceus ligand-gated ion channel gating in a membrane environment and report the interface conformation in the closed and the desensitized states. Extensive intrasubunit interactions were observed in the closed state that are weakened upon desensitization and replaced by newer intersubunit contacts. Gating involves major rearrangements of the interfacial loops, accompanied by reorganization of the protein-lipid-water interface. These structural changes may serve as targets for modulation of gating by lipids, alcohols, and amphipathic drug molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号