首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   59篇
  936篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   8篇
  2019年   15篇
  2018年   21篇
  2017年   12篇
  2016年   30篇
  2015年   38篇
  2014年   46篇
  2013年   63篇
  2012年   57篇
  2011年   57篇
  2010年   36篇
  2009年   38篇
  2008年   49篇
  2007年   56篇
  2006年   59篇
  2005年   49篇
  2004年   48篇
  2003年   42篇
  2002年   33篇
  2001年   20篇
  2000年   13篇
  1999年   17篇
  1998年   13篇
  1997年   8篇
  1996年   13篇
  1995年   6篇
  1994年   6篇
  1992年   2篇
  1991年   7篇
  1990年   8篇
  1988年   4篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有936条查询结果,搜索用时 15 毫秒
91.
Mechanical forces play an increasingly recognized role in modulating cell function. This report demonstrates mechanosensing by T cells, using polyacrylamide gels presenting ligands to CD3 and CD28. Naive CD4 T cells exhibited stronger activation, as measured by attachment and secretion of IL-2, with increasing substrate elastic modulus over the range of 10–200 kPa. By presenting these ligands on different surfaces, this report further demonstrates that mechanosensing is more strongly associated with CD3 rather than CD28 signaling. Finally, phospho-specific staining for Zap70 and Src family kinase proteins suggests that sensing of substrate rigidity occurs at least in part by processes downstream of T-cell receptor activation. The ability of T cells to quantitatively respond to substrate rigidly provides an intriguing new model for mechanobiology.  相似文献   
92.
The endothelium, although only a single layer of cells lining the vascular and lymphatic systems, contributes in multiple ways to vascular homeostasis. Subsequent to the 1980 report by Robert Furchgott and John Zawadzki, there has been a phenomenal increase in our knowledge concerning the signalling molecules and pathways that regulate endothelial - vascular smooth muscle communication. It is now recognised that the endothelium is not only an important source of nitric oxide (NO), but also numerous other signalling molecules, including the putative endothelium-derived hyperpolarizing factor (EDHF), prostacyclin (PGI(2)), and hydrogen peroxide (H(2)O(2)), which have both vasodilator and vasoconstrictor properties. In addition, the endothelium, either via transferred chemical mediators, such as NO and PGI(2), and (or) low-resistance electrical coupling through myoendothelial gap junctions, modulates flow-mediated vasodilatation as well as influencing mitogenic activity, platelet aggregation, and neutrophil adhesion. Disruption of endothelial function is an early indicator of the development of vascular disease, and thus an important area for further research and identification of potentially new therapeutic targets. This review focuses on the signalling pathways that regulate endothelial - vascular smooth muscle communication and the mechanisms that initiate endothelial dysfunction, particularly with respect to diabetic vascular disease.  相似文献   
93.
A novel co-regulation exists between the first step of GPI (glycosylphosphatidylinositol) anchor biosynthesis and the rate-determining step of ergosterol biosynthesis in Candida albicans. Depleting CaGpi19p, an accessory subunit of the enzyme complex that initiates GPI biosynthesis, down-regulates ERG11, altering ergosterol levels and drug response. This effect is specific to CaGpi19p depletion and is not due to cell wall defects or GPI deficiency. Additionally, down-regulation of ERG11 down-regulates CaGPI19 and GPI biosynthesis.  相似文献   
94.
95.
96.
Discovery of novel antimycobacterial compounds that work on distinctive targets and by diverse mechanisms of action is urgently required for the treatment of mycobacterial infections due to the emerging global health threat of tuberculosis. We have identified a new class of 5-ethyl or hydroxy (or methoxy) methyl-substituted pyrimidine nucleosides as potent inhibitors of Mycobacterium bovis, Mycobacterium tuberculosis (H37Ra, H37Rv) and Mycobacterium avium. A series of 2'-'up' fluoro (or hydroxy) nucleosides (1, 2, 4-6, 9, 10, 13, 16, 18, 21, 24) was synthesized and evaluated for antimycobacterial activity. Among 2'-fluorinated compounds, 1-(3-bromo-2,3-dideoxy-2-fluoro-β-d-arabinofuranosyl)-5-ethyluracil (13) exhibited promising activity against M. bovis and Mtb alone, and showed synergism when combined with isoniazid. The most active compound emerging from these studies, 1-(β-d-arabinofuranosyl)-4-thio-5-hydroxymethyluracil (21) inhibited Mtb (H37Ra) (MIC(50)=0.5 μg/mL) and M. bovis (MIC(50)=0.5 μg/mL) at low concentrations, and was ten times more potent against Mtb (H37Ra) than cycloserine (MIC(50)=5.0 μg/mL), a second line drug. It also showed an additive effect when combined with isoniazid. Compound 21 retained sensitivity against a rifampicin-resistant (H37Rv) strain of Mtb (MIC(50)=1 μg/mL) at concentrations similar to that for a rifampicin-sensitive (H37Rv) strain, suggesting that it has no cross-resistance to a first-line anti-TB drug. In addition, the replication of M. avium was also inhibited by 21 (MIC(50)=10 μg/mL). No cellular toxicity of 13 or 21 was observed up to the highest concentration tested (CC(50)>100 μg/mL). These observations offer promise for a new drug treatment regimen to augment and complement the current chemotherapy of TB.  相似文献   
97.
Phosphodiesterase 4B (PDE4B) is an important therapeutic target for asthma and chronic obstructive pulmonary disease. To identify PDE4 subtype-specific compounds using high-throughput assays, full-length recombinant PDE4 proteins are needed in bulk quantity. In the present study, full-length human PDE4B2 was expressed in the cellular slime mould Dictyostelium discoideum (Dd). A cell density of 2 x 10(7) cells/mL was obtained and up to 1 mg/L recombinant PDE4B2 was purified through Ni-NTA affinity chromatography. The expressed protein was soluble and its activity was comparable to PDE4B2 protein expressed in mammalian cells (K(m)=1.7 microM). The functional significance of the Dd expression system is supported by the demonstration that, in concert with proteins expressed in mammalian systems, there are no major changes in the affinity for PDE4B2 inhibitors and substrates. These findings thus provide the first evidence that Dd can be utilized for the expression and purification of functionally active full-length human PDE4B2 in large amounts required for high-throughput screening of pharmacologically active compounds against this therapeutic target.  相似文献   
98.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system.  相似文献   
99.
Processing of DNA replication and repair intermediates is a critical aspect of genome stability maintenance. The coordinated action of RecQ-like helicases with structure-specific nucleases such as Flap Endonuclease 1 plays an important role in the processing of certain DNA structures associated with the replication fork, DNA repair, or telomeres. We will summarize our current understanding of how and in what context these interactions take place, with a particular emphasis on the mechanisms of RecQ helicases in processing of key DNA replication and repair intermediates by their protein interactions with FEN-1 and related structure-specific nucleases.  相似文献   
100.
Plants are a nearly unlimited source of phytochemicals. The plants produce various secondary metabolites, which are useful in its interaction with the environment, various stress factors and development of resistance against pathogen attack. A wide array of external stimuli are capable of triggering changes in the plant cell which leads to a cascade of reactions, ultimately resulting in the formation and accumulation of secondary metabolites which helps the plant to overcome the stress factors. The biotic and abiotic elicitors can result in an enhancement of the secondary metabolite production. The stimuli are perceived by receptors, which then result in the activation of the secondary messengers. These then transmit the signals into the cell through the signal transduction pathways leading to gene expression and biochemical changes. There is interplay of the signaling molecules also which regulates the entire pathway. This review is oriented towards the factors, which influence signal transduction pathway(s) with special reference to polyamines, calcium, jasmonates, salicylates, nitric oxide and ethylene. The interplay of these components to elicit a defense response is discussed. Molecular aspects of disease resistance and regulation of plant secondary metabolism has also been presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号