首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   50篇
  2023年   3篇
  2022年   4篇
  2021年   18篇
  2020年   5篇
  2019年   14篇
  2018年   14篇
  2017年   11篇
  2016年   23篇
  2015年   30篇
  2014年   40篇
  2013年   51篇
  2012年   54篇
  2011年   40篇
  2010年   34篇
  2009年   30篇
  2008年   38篇
  2007年   45篇
  2006年   46篇
  2005年   38篇
  2004年   33篇
  2003年   34篇
  2002年   25篇
  2001年   13篇
  2000年   8篇
  1999年   13篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   3篇
  1992年   2篇
  1991年   4篇
  1990年   7篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有752条查询结果,搜索用时 156 毫秒
141.
SMCT1 is a Na+-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1. SMCT1 cDNA was expressed heterologously in the human retinal pigment epithelial cell lines HRPE and ARPE-19, the human mammary epithelial cell line MCF7, and in Xenopus laevis oocytes. Transport was monitored by substrate uptake and substrate-induced currents. Na+-dependent uptake/current was considered as SMCT1 activity. The effect of diclofenac was evaluated for specificity, dose-response, and influence on transport kinetics. To study the specificity of the diclofenac effect, we evaluated the influence of this NSAID on the activity of several other cloned transporters in mammalian cells under identical conditions. In contrast to several NSAIDs that inhibited SMCT1, diclofenac stimulated SMCT1 when expressed in HRPE and ARPE-19 cells. The stimulation was marked, ranging from 2- to 5-fold depending on the concentration of diclofenac. The stimulation was associated with an increase in the maximal velocity of the transport system as well as with an increase in substrate affinity. The observed effect on SMCT1 was selective because the activity of several other cloned transporters, when expressed in HRPE cells and studied under identical conditions, was not affected by diclofenac. Interestingly, the stimulatory effect on SMCT1 observed in HRPE and ARPE-19 cells was not evident in MCF7 cells nor in the X. laevis expression system, indicating that SMCT1 was not the direct target for diclofenac. The RPE-specific effect suggests that the target of diclofenac that mediates the stimulatory effect is expressed in RPE cells but not in MCF7 cells or in X. laevis oocytes. Since SMCT1 is a concentrative transporter for metabolically important compounds such as pyruvate, lactate, β-hydroxybutyrate, and nicotinate, the stimulation of its activity by diclofenac in RPE cells has biological and clinical significance.  相似文献   
142.
It is well reported that the environmental factors along with different endocrine stimulus play a crucial role in maintenance of adrenocortical activity in birds. This study is first to report a detailed seasonal activity cycle of adrenal cortex, particu-larly its secretory physiology in a tropical nocturnal bird, Indian spotted owlet Athene brama. The maximum cortical activity having highest glandular mass, glandular free cholesterol, esterified cholesterol profiles, and peak level of corticosterone in plasma coincided with the long day length, highest temperature and increasing amplitude of relative humidity and rainfall of the early summer month, May. Cortical activity declined to minimum level in August when the ecofactors also declined parallely and hence, the birds entered into partial hibernation. The cortical activity progressed slowly throughout the winter (September–March) to reach maximum level in May. Further, the electron microscopic observations of cortical cell morphology strongly supported the above seasonal activity status of the gland revealing a comparatively large number of mitochondria during May than August, along with lipid filled vacuoles during May but not in August. Besides, assessment of gonadal and pineal hormones in relation with seasonal activity of adrenal cortex presented a parallel relationship with gonad while completely inverse relationship with pineal. Therefore, the study concludes that the seasonal adrenocortical activity of this tropical nocturnal bird might be regulated by multiple factors, particularly by the environmental temperature, humidity/rainfall and photoperiod along with the internal factors at least by gonadal and pineal hormones.  相似文献   
143.
Hydroxyapatite (HA), a bioceramic, is a widely utilized material for bone tissue repair and regeneration because of its excellent properties such as biocompatibility, exceptional mechanical strength, and osteoconductivity. HA can be obtained by both synthetic and natural means. Animal bones are often considered a promising natural resource for the preparation of pure HA for biological and biomedical applications. Cuttlefish bone, also called as cuttlebone, mainly consists of calcium carbonate, and pure HA can be produced by adding phosphoric acid or ammonium hydrogen phosphate to it. Recently, cuttlefish bone-derived HA has shown promising results in terms of bone tissue repair and regeneration. The synthesized cuttlefish bone-derived has shown excellent biocompatibility, cell proliferation, increased alkaline phosphate activity, and efficient biomineralization ability with mesenchymal stem cells and osteoblastic cells. To further improve the biological properties of cuttlefish bone-derived HA, bioglass, polycaprolactone, and polyvinyl alcohol were added to it, which gave better results in terms of cell proliferation and osteogenic differentiation. Cuttlefish bone-derived HA with polymeric substances provides excellent bone formation under in vivo conditions. The studies indicate that cuttlefish bone-derived HA, along with polymeric and, protein materials, will be promising biomaterials in the field of bone tissue regeneration.  相似文献   
144.
Mycopathologia was founded in 1938 to ‘diffuse the understanding of fungal diseases in man and animals among mycologists.’ This was an important mission considering that pathogenic fungi for humans and animals represent a tiny minority of the estimated 1.5–5 million fungal inhabitants on Earth. These pathogens have diverged from the usual saprotrophic lifestyles of most fungi to colonize and infect humans and animals. Medical and veterinary mycology is the subdiscipline of microbiology that dwells into the mysteries of parasitic, fungal lifestyles. Among the oldest continuing scientific publications on the subject, Mycopathologia had its share of ‘classic papers’ since the first issue was published in 1938. An analysis of the eight decades of notable contributions reveals many facets of host–pathogen interactions among 183 volumes comprising about 6885 articles. We have analyzed the impact and relevance of this body of work using a combination of citation tools (Google Scholar and Scopus) since no single citation metric gives an inclusive perspective. Among the highly cited Mycopathologia publications, those on experimental mycology accounted for the major part of the articles (36%), followed by diagnostic mycology (16%), ecology and epidemiology (15%), clinical mycology (14%), taxonomy and classification (10%), and veterinary mycology (9%). The first classic publication, collecting nearly 200 citations, appeared in 1957, while two articles published in 2010 received nearly 150 citations each, which is notable for a journal covering a highly specialized field of study. An empirical analysis of the publication trends suggests continuing interests in novel diagnostics, fungal pathogenesis, review of clinical diseases especially with relevance to the laboratory scientists, taxonomy and classification of fungal pathogens, fungal infections and carriage in pets and wildlife, and changing ecology and epidemiology of fungal diseases around the globe. We anticipate that emerging and re-emerging fungal pathogens will continue to cause significant health burden in the coming decades. It remains vital that scientists and physicians continue to collaborate by learning each other’s language for the study of fungal diseases, and Mycopathologia will strive to be their partner in this increasingly important endeavor to its 100th anniversary in 2038 and beyond.  相似文献   
145.
Rapid micropropagation of Trichopus zeylanicus Gaertn. subsp. travancoricus Burkil ex Narayanan, a rare ethnomedicinal herb endemic to the Western Ghats of southern India, was achieved by culturing shoot tips (0.3–0.5 cm) of 2-month-old axenic seedlings on Woody Plant Medium. Among the cytokinins tested, only BAP induced callus-free multiple shoot bud formation, with a maximum of 8.5±0.4 buds per explant being obtained with 2.0 mg.l–1 BAP after 8 weeks of culture. Shoot tips containing proliferated buds were divided and subcultured on medium containing 0.2 mg.l–1 BAP to produce 12.0±1.0 shoots per explant in 6 weeks. Excision of buds after culture initiation, with subculture of the debudded basal tissue in 2 successive passages yielded 20.0±1.0 and 13.5±0.5 buds per explant respectively. Each bud cultured in turn for 4 weeks on WPM with 1.0 mg.l–1 BAP formed 3.8±0.4 secondary buds which were repeatedly recultured to increase bud production. Altogether this method enabled an estimated harvest of 7848 buds from a single shoot tip in 28 months. Shoots (3–5 cm) developed from bud cultures were rooted in half-strength WPM medium with 0.5 mg.l–1 each of NAA and IBA, and 90–100% of the rooted plants were established in the field after hardening. Micropropagated plants were grown to maturity free of defects in growth, morphological, flowering and seed set characteristics.Abbreviations WPM Woody Plant Medium (Lloyd and `McCown 1980) - BAP 6-benzylaminopurine - 2-ip 2-iso-pentenyladenine - Kinetin 6-furfurylaminopurine - IBA indole-3-butyric acid - NAA 1-naphthaleneacetic acid  相似文献   
146.
147.
Reactive oxygen and nitrogen species (ROS and RNS) produced by the phagocytic cells are the most common arsenals used to kill the intracellular pathogens. However, Leishmania, an intracellular pathogen, has evolved mechanisms to survive by counterbalancing the toxic oxygen metabolites produced during infection. Polyamines, the major contributor in this anti-oxidant machinery, are largely dependent on the availability of L-arginine in the intracellular milieu. Argininosuccinate synthase (ASS) plays an important role as the rate-limiting step required for converting L-citrulline to argininosuccinate to provide arginine for an assortment of metabolic processes. Leishmania produce an active ASS enzyme, yet it has an incomplete urea cycle as it lacks an argininosuccinate lyase (ASL). There is no evidence for endogenous synthesis of L-arginine in Leishmania, which suggests that these parasites salvage L-arginine from extracellular milieu and makes the biological function of ASS and the production of argininosuccinate in Leishmania unclear. Our previous quantitative proteomic analysis of Leishmania promastigotes treated with sub-lethal doses of ROS, RNS, or a combination of both, led to the identification of several differentially expressed proteins which included ASS. To assess the involvement of ASS in stress management, a mutant cell line with greatly reduced ASS activity was created by a double-targeted gene replacement strategy in L. donovani promastigote. Interestingly, LdASS is encoded by three copies of allele, but Western blot analysis showed the third allele did not appear to express ASS. The free thiol levels in the mutant LdASS-/-/+ cell line were decreased. Furthermore, the cell viability in L-arginine depleted medium was greatly attenuated on exposure to different stress environments and was adversely impacted in its ability to infect mice. These findings suggest that ASS is important for Leishmania donovani to counterbalance the stressed environments encountered during infection and can be targeted for chemotherapeutic purpose to treat visceral leishmaniasis.  相似文献   
148.
The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis.  相似文献   
149.
The characteristics of vesicles formed from Dipalmitoyl Phosphatidyl Choline (DPPC) are sensitive to the presence of perturbing molecules such as drugs, peptides, hormones and vitamins. We have used ESR spin labeling and NMR techniques for studying interaction of such molecules with lipid bilayers. ESR spin labeling has been used to monitor thermotropic behaviour of model membranes. Different NMR probes such as1H,31P,13C have been used to gather information regarding the mode of interaction. It has been observed that the model membrane systems respond differently depending upon the localization of the perturbing molecules in the lipid bilayer. Small molecules such as neurotransmitters epinephrine and norepinephrine decrease gel to liquid crystalline phase transition temperature significantly even when present in small amounts. Vitamine E acetate having a hydrophobic hydrocarbon tail orients parallel to the lipid molecule and thereby exhibits dynamics similar to palmitate chain. When the acetate group is replaced by hydroxyl group (-tocopherol), the phase transition becomes broad and the lipid molecules loose freedom of lateral diffusion. This can be attributed to formation of hydrogen bond between the hydroxyl group of -tocopherol and phosphate moiety of lipid. The conformation of antidepressants nitroxazepine and imipramine is significantly altered when embedded in lipid bilayer. Anaesthetic etomidate not only modifies thermotropic characteristics but also induces polymorphism. The normal bilayer arrangement of lipids gets transformed into hexagonal packing. Amino acid tryptophan induces cubic phases in the normal bilayer arrangement of DPPC dispersions. Peptide gonadoliberin shows a reduced internal motion due to the lipid peptide interaction.The major consequences of binding of lipids with externally added molecules are changes in the fluidity and permeability properties of membranes. It has been shown that permeability is effected by the presence of molecules such as propranolol, -tocopherol and its analogue, neurotransmitters, etc. The magnetic resonance methods have thus evolved as power techniques in the study of membrane structure and function.  相似文献   
150.
Summary Cytotoxic cells (CTCs) generated from peripheral blood lymphocytes of 5 chronic myeloid leukemia (CML) patients in remission on stimulation with autologous leukemic cells and allogeneic lymphocytes (3-cell assay), were propagated in vitro in interleukin-2 (IL-2)-containing medium and periodic stimulation with autologous leukemic cells, for a period of 4 to 6 months. During this period, the cells were assessed for phenotype and for cytotoxic responses in a 4-h 51Cr release microcytotoxicity assay. The CTCs continued to show specific lysis of autologous leukemic cells and bone marrow (BM) cells. However, the nonspecific lysis of natural killer (NK) targets and the proportion of cells showing NK phenotype (HNK-1 antigen) increased progressively on cultivation in IL-2-containing medium. Therefore cells showing CD8 phenotype and specific cytotoxic function were segregated by cloning CTCs under the condition of limiting dilution in the presence of allogeneic feeder cells and IL-2-containing medium. Three cytotoxic T cell (CTL) clones expressing CD3+, CD8+, and HLA DR+ phenotypes were obtained from CTCs of 2 CML patients. These clonoid populations, maintained in IL-2-containing medium and periodic antigenic stimulation with autologous leukemic cells, showed specific lysis of autologous leukemic cells and BM cells even at lower (10:1) effector:target ratios. They did not kill K562 (erythroblastoid leukemic NK target cell line) cells and autologous phytohemagglutinin-induced blasts. These clones apparently functioned in an MHC-restricted manner as they did not lyse allogeneic CML cells which would also express a similar set of maturation antigens if sensitization was, as it appeared, against these antigens. Finally, interaction of autologous BM cells with CTL clones reduced the colony forming potential of BM cells only to the extent of 18%–30%. The results therefore indicate that such CTL clones can possibly be used in adoptive immunotherapy as they showed minimal BM toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号