排序方式: 共有140条查询结果,搜索用时 15 毫秒
81.
Sudeep Kumar Aditya Kapoor Nagaraja Moorthy Yash Lokhandwala 《Indian pacing and electrophysiology journal》2015,15(1):76-78
Lead induced transient right bundle branch block is not uncommon during pacemaker implantation. We describe a patient with old anterior wall myocardial infarction with severe left ventricular dysfunction presenting with recurrent ventricular tachycardia who developed transient right bundle branch block and pseudomyocardial infacrction pattern during AICD implantation.Key words: Pseudo Myocardial Infarction, AICD implantation 相似文献
82.
Sudeep Kumar Hana Kang Eunsook Park Hee-Sae Park Keesook Lee 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2018,1861(12):1063-1075
CKLFSF is a protein family that serves as a functional bridge between chemokines and members of the transmembrane 4 superfamily (TM4SF). In the course of evolution, CKLFSF2 has evolved as two isoforms, namely CKLFSF2A and CKLFSF2B, in mice. CKLFSF2A, also known as CMTM2A and ARR19, is expressed in the testis and is important for testicular steroidogenesis. CKLFSF2B is also known to be highly expressed in the testis. In the prepubertal stage, CKLFSF2B is expressed only in Leydig cells, but it is highly expressed in haploid germ cells and Leydig cells in adult testis. CKLFSF2B is naturally processed inside the cell at its C-terminus to yield smaller proteins compared to its theoretical size of ≈25?kDa. The Cklfsf2b gene is regulated by GATA-1 and CREB protein, binding to their respective binding elements present in the 2-kb upstream promoter sequence. In addition, the overexpression of CKLFSF2B inhibited the activity of the Nur77 promoter, which consequently represses the promoter activity of Nur77-target steroidogenic genes such as P450c17, 3β-HSD, and StAR in MA-10 Leydig cells. Adenovirus-mediated overexpression of CKLFSF2B in primary Leydig cells isolated from adult mice shows a repression of steroidogenic gene expression and consequently testosterone production. Moreover, intratesticular injection of CKLFSF2B-expressing adenovirus in adult mice clearly had a repressive effect compared to the control injected with only GFP-expressing adenovirus. Altogether, these findings suggest that CKLFSF2B might be involved in the development and function of Leydig cells and regulate testicular testosterone production by fine-tuning the expression of steroidogenic genes. 相似文献
83.
Potential molecular mechanism for c-Src kinase-mediated regulation of intestinal cell migration 总被引:1,自引:0,他引:1
Mathew S George SP Wang Y Siddiqui MR Srinivasan K Tan L Khurana S 《The Journal of biological chemistry》2008,283(33):22709-22722
The ubiquitously expressed Src tyrosine kinases (c-Src, c-Yes, and c-Fyn) regulate intestinal cell growth and differentiation. Src activity is also elevated in the majority of malignant and premalignant tumors of the colon. The development of fibroblasts with the three ubiquitously expressed kinases deleted (SYF cells) has identified the role of Src proteins in the regulation of actin dynamics associated with increased cell migration and invasion. Despite this, unexpectedly nothing is known about the role of the individual Src kinases on intestinal cell cytoskeleton and/or cell migration. We have previously reported that villin, an epithelial cell-specific actin-modifying protein that regulates actin reorganization, cell morphology, cell migration, cell invasion, and apoptosis, is tyrosine-phosphorylated. In this report using the SYF cells reconstituted individually with c-Src, c-Yes, c-Fyn, and wild type or phosphorylation site mutants of villin, we demonstrate for the first time the absolute requirement for c-Src in villin-induced regulation of cell migration. The other major finding of our study is that contrary to previous reports, the nonreceptor tyrosine kinase, Jak3 (Janus kinase 3), does not regulate phosphorylation of villin or villin-induced cell migration and is, in fact, not expressed in intestinal epithelial cells. Further, we identify SHP-2 and PTP-PEST (protein-tyrosine phosphatase proline-, glutamate-, serine-, and threonine-rich sequence) as negative regulators of c-Src kinase and demonstrate a new function for these phosphatases in intestinal cell migration. Together, these data suggest that in colorectal carcinogenesis, elevation of c-Src or down-regulation of SHP-2 and/or PTP-PEST may promote cancer metastases and invasion by regulating villin-induced cell migration and cell invasion. 相似文献
84.
Sanford B Cao B Johnson JM Zimmerman K Strom AM Mueller RM Bhattacharyya S Musier-Forsyth K Hati S 《Biochemistry》2012,51(10):2146-2156
Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNA(Pro) substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In this study, experimental and computational approaches were used to test the hypothesis that deletion of the INS alters the internal protein dynamics leading to reduced catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199-206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Altogether, this study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity. 相似文献
85.
Sudeep Bose Surajit Ganguly Sachin Kumar Fredric R. Boockfor 《Neurochemical research》2016,41(6):1390-1400
Recent evidence reveals that prolactin gene expression (PRL-GE) in mammotropes occurs in pulses, but the molecular process(es) underlying this phenomenon remains unclear. Earlier, we have identified an E-box (E-box133) in the rat PRL promoter that binds several circadian elements and is critical for this dynamic process. Preliminary analysis revealed a Pit-1 binding site (P2) located immediately adjacent to this E-box133 raising the possibility that some type of functional relationship may exist between these two promoter regions. In this study, using serum shocked GH3 cell culture system to synchronize PRL-GE activity, we determined that Pit-1 gene expression occurred in pulses with time phases similar to that for PRL. Interestingly, EMSA analysis not only confirmed Pit-1 binding to the P2 site, but also revealed an interaction with factor(s) binding to the adjacent E-box133 promoter element. Additionally, down-regulation of Pit-1 by siRNA reduced PRL levels during pulse periods. Thus, using multiple evidences, our results demonstrate clearly that the Pit-1 P2 site is necessary for PRL-GE elaboration. Furthermore, the proximity of this critical Pit-1 binding site (P2) and the E-box133 element coupled with the evidences of a site-to-site protein interactions suggest that the process of PRL-GE pulse activity might involve more dynamic and intricate cross-talks between promoter elements that may span some, or all, of the proximal region of the PRL promoter in driving its pulsatile expression. 相似文献
86.
The N terminus of MinD contains determinants which affect its dynamic localization and enzymatic activity
下载免费PDF全文

MinD is involved in regulating the proper placement of the cytokinetic machinery in some bacteria, including Neisseria gonorrhoeae and Escherichia coli. Stimulation of the ATPase activity of MinD by MinE has been proposed to induce dynamic, pole-to-pole oscillations of MinD in E. coli. Here, we investigated the effects of deleting or mutating conserved residues within the N terminus of N. gonorrhoeae MinD (MinD(Ng)) on protein dynamism, localization, and interactions with MinD(Ng) and with MinE(Ng). Deletions or mutations were generated in the first five residues of MinD(Ng), and mutant proteins were evaluated by several functional assays. Truncation or mutation of N-terminal residues disrupted MinD(Ng) interactions with itself and with MinE. Although the majority of green fluorescent protein (GFP)-MinD(Ng) mutants could still oscillate from pole to pole in E. coli, the GFP-MinD(Ng) oscillation cycles were significantly faster and were accompanied by increased cytoplasmic localization. Interestingly, in vitro ATPase assays indicated that MinD(Ng) proteins lacking the first three residues or with an I5E substitution possessed higher MinE(Ng)-independent ATPase activities than the wild-type protein. These results indicate that determinants found within the extreme N terminus of MinD(Ng) are implicated in regulating the enzymatic activity and dynamic localization of the protein. 相似文献
87.
The anaphase-promoting complex (APC/C) orchestrates progression through mitosis by decorating cell-cycle regulators with ubiquitin chains. To nucleate chains, the APC/C links ubiquitin to a lysine in substrates, but to elongate chains it modifies lysine residues in attached ubiquitin moieties. The mechanism enabling the APC/C, and ubiquitin ligases in general, to switch from lysine residues in substrates to specific ones in ubiquitin remains poorly understood. Here, we determine the topology and the mechanism of assembly for the ubiquitin chains mediating functions of the human APC/C. We find that the APC/C triggers substrate degradation by assembling K11-linked ubiquitin chains, the efficient formation of which depends on a surface of ubiquitin, the TEK-box. Strikingly, homologous TEK-boxes are found in APC/C substrates, where they facilitate chain nucleation. We propose that recognition of similar motifs in substrates and ubiquitin enables the APC/C to assemble ubiquitin chains with the specificity and efficiency required for tight cell-cycle control. 相似文献
88.
Eight lepidopteran cell lines were established recently and their susceptibility to different insect viruses was studied. Two Spodoptera litura cell lines from the larval and pupal ovaries, were found highly susceptible to S. litura nuclear polyhedrosis virus (SLNPV, 5-6 x 10(6) NPV/ml). The Helicoverpa armigera cell line from the embryonic tissue was highly susceptible to H. armigera NPV (HaNPV, 6.3 x 10(6) NPV/ml). These in vitro grown SLNPV and HaNPV caused 100% mortality to respective 2nd instar larvae. The susceptibility of the cryo-preserved cell lines to respective baculoviruses (SLNPV/HaNPV) was studied and no significant difference in their susceptibility status was observed. The cultures could grow as suspension culture on shakers and may find application for in vitro production of wild type/recombinant baculoviruses as bio-insecticides. S. litura and Bombyx mori cell lines from larval ovaries, were highly susceptible to Autographa californica NPV (5.5 x 10(6) NPV/ml) and Bombyx mori NPV (BmNPV, 6.1 x 10(6) NPV/ml) respectively. These cell lines may find application in baculovirus expression vector studies for the production of recombinant proteins, useful in the development of diagnostic kits or as vaccines. 相似文献
89.
Evin Hildebrandt John R. Dunn Sudeep Perumbakkam Masahiro Niikura Hans H. Cheng 《Journal of virology》2014,88(11):6232-6242
90.
Differential expression of miRNAs has been linked with lung carcinogenesis. Recent studies have indicated that DNA hypermethylation can lead to silencing of tumor suppressor miRNA-encoding genes. Restoration of tumor suppressor miRNAs using inhibitors of DNA methyltransferases has been shown to suppress cell proliferation, angiogenesis, invasion and metastasis implying that modulation of methylation of specific miRNAs can be used as novel therapeutic targets in lung cancer. In this review, we highlight tremendous progress which has been made in the identification of methylation-mediated silencing of miRNAs and their contribution in lung carcinogenesis along with the clinical utility of methylated miRNAs. 相似文献