首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   11篇
  2013年   8篇
  2012年   15篇
  2011年   10篇
  2010年   10篇
  2009年   7篇
  2008年   11篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   7篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
31.
32.
Endoglucanase ofRuminococcus sp. is composed of seven active protein components when chromatographed on an ion exchange column (Q-Sepharose). Component I (endoglucanase A) did not bind to the column and was purified to homogeneity by molecular sieve chromatography. It had a mol. wt. of 22 000. Component II was fractionated into two active protein peaks (endoglucanase B and C) having mol. wt. of 225 000 and 10 000. The endoglucanase A had high affinity for CMC (Km 8 mg/ml). The temperature optimum of all three endoglucanase was between 40–45°C. The gene encoding for endolucanase activity was cloned inE. coli HB101 with pBR322. A 4.3 kilobaseBamH1 fragment encoding endoglucanase was hybridized toRuminococcus chromosomal DNA.  相似文献   
33.
The Protein Journal - Using molecular dynamics simulations, the protein–protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory...  相似文献   
34.
Visceral leishmaniasis (VL), caused by Leishmania donovani, is a major health concern in India. It represents T-helper type 2 (Th2) bias of cytokines in active state and Th1 bias at cure. However, the role of the parasite in regulating Toll-like receptor (TLR)-mediated macrophage activation in VL patients remains elusive. In this report, we demonstrated that later stages of L. donovani infection rendered tolerance to macrophages, leading to incapability for the production of inflammatory cytokines like tumor necrosis factor (TNF)-α and interleukin (IL)-1β in response to TLR stimulation. Overexpression of transforming growth factor (TGF)-β(1), but not IL-10, resulted in suppressed lipopolysaccharide (LPS)-induced production of TNF-α and downregulation of TLR4 expression in L. donovani-infected macrophages. Recombinant human (rh)TGF-β(1) markedly enhanced tyrosine phosphatase (Src homology region 2 domain-containing phosphatase-1) activity, but inhibited IL-1 receptor-activated kinase (IRAK)-1 activation. Addition of neutralizing TGF-β(1) antibody reversed these effects, and thus suggesting the pivotal role of TGF-β(1) in promoting refractoriness for LPS in macrophages. Surprisingly, the use of a tyrosine phosphatase inhibitor (sodium orthovanadate, Na(3)VO(4)) promoted IRAK-1 activation, confirming the negative inhibitory role of tyrosine phosphatase in macrophage activation. Furthermore, rhTGF-β(1) induced tolerance in infected macrophages by reducing inhibitory protein (IκBα) degradation in a time-dependent manner. In addition, short interfering RNA studies proved that overexpression of A20 ubiquitin-editing protein complex induced inhibitory activity of TGF-β(1) on LPS-mediated nuclear factor-κB activation. Thus, these findings suggest that TGF-β(1) promotes overexpression of A20 through tyrosine phosphatase activity that ensures transient activation of inflammatory signaling pathways in macrophages in active L. donovani infection.  相似文献   
35.
36.
We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment—previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches—yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/.  相似文献   
37.
Naturally occurring quinolone alkaloids, buchapine (1) and compound 2 were synthesized as reported in literature and evaluated for anti-HIV potential in human CD4+ T cell line CEM-GFP, infected with HIV-1NL4.3 virus by p24 antigen capture ELISA assay. The compounds 1 and 2 showed potent inhibitory activity with IC50 value of 2.99 and 3.80 μM, respectively. Further, 45 alkylated derivatives of quinoline 2,4-diol were synthesized and tested for anti-HIV potential in human CD4+ T cell line CEM-GFP. Among these, 13 derivatives have shown more than 60% inhibition. We have identified three most potent inhibitors 6, 9 and 23; compound 6 was found to be more potent than lead molecule 1 with IC50 value of 2.35 μM and had better therapeutic index (26.64) as compared to AZT (23.07). Five derivatives 7, 19a, 19d, 21 and 24 have displayed good noticeable anti-HIV activity. All active compounds showed higher CC50 values which indicate that they have better therapeutic indices.  相似文献   
38.
The first report of slow-tight inhibition of xylanase by a bifunctional inhibitor alkalo-thermophilic Bacillus inhibitor (ATBI), from an extremophilic Bacillus sp. is described. ATBI inhibits aspartic protease (Dash, C., and Rao, M. (2001) J. Biol. Chem., 276, 2487-2493) and xylanase (Xyl I) from a Thermomonospora sp. The steady-state kinetics revealed time-dependent competitive inhibition of Xyl I by ATBI, consistent with two-step inhibition mechanism. The inhibition followed a rapid equilibrium step to form a reversible enzyme-inhibitor complex (EI), which isomerizes to the second enzyme-inhibitor complex (EI*), which dissociated at a very slow rate. The rate constants determined for the isomerization of EI to EI*, and the dissociation of EI* were 13 +/- 1 x 10(-6) s(-1) and 5 +/- 0.5 x 10(-8) s(-1), respectively. The K(i) value for the formation of EI complex was 2.5 +/- 0.5 microm, whereas the overall inhibition constant K(i)* was 7 +/- 1 nm. The conformational changes induced in Xyl I by ATBI were monitored by fluorescence spectroscopy and the rate constants derived were in agreement with the kinetic data. Thus, the conformational alterations were correlated to the isomerization of EI to EI*. ATBI binds to the active site of the enzyme and disturbs the native interaction between the histidine and lysine, as demonstrated by the abolished isoindole fluorescence of o-phthalaldehyde (OPTA)-labeled Xyl I. Our results revealed that the inactivation of Xyl I is due to the disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis and a model depicting the probable interaction between ATBI or OPTA with Xyl I has been proposed.  相似文献   
39.
A new cell line from the embryonic tissue of Helicoverpa armigera was established and designated as NIV-HA-197. It was maintained in TNM-FH medium supplemented with 10% fetal bovine serum. The cell line at passage 20 had a heterogeneous population of cells consisting of mainly epithelial-like cells (70%), followed by fibroblast-like (27%), and multinucleated giant (3%) cells. The chromosome number ranged from 45 to 185. The growth curve at passage 40 showed a fivefold increase in cell number with a population-doubling time of approximately 60 h. The cell line was found infected with the microsporidium Nosema heliothids at passage 9. Using the antiprotozoan drug Metrogyl 400 and simultaneous heat treatment, the parasite was removed from the culture. The cell line can be cryopreserved for 30 mo. The species specificity of the new cell line was determined by studying the isoenzyme profile of four enzymes, viz., lactate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and glucose 6-phosphate dehydrogenase, and by heteroduplex analysis. Heteroduplex analysis was used to analyze the mitochondrial 16S ribosomal ribonucleic acid gene sequences along with the host insect gene sequences, and 100% homology was obtained, confirming the conspecificity of the cell line. The cell line was found to be susceptible to the baculoviruses Autographa californica multiple nucleopolyhedrovirus, Spodoptera litura multiple nucleopolyhedrovirus, and H. armigera single nucleopolyhedrovirus (HaSNPV). More than 90% of the cells were infected by HaSNPV on the seventh post infection day (PID), and 28.8 x 10(6) NPV/ml was yielded on the 10th PID. The in vitro-grown HaSNPV caused 100% mortality, when fed to the second instar H. armigera larvae, in 6 d. Cessation of feeding was observed on the second PID.  相似文献   
40.
Taxonomy: Cotton leafroll dwarf virus (CLRDV) is a member of the genus Polerovirus, family Solemoviridae. Geographical Distribution: CLRDV is present in most cotton-producing regions worldwide, prominently in North and South America. Physical Properties : The virion is a nonenveloped icosahedron with T = 3 icosahedral lattice symmetry that has a diameter of 26–34 nm and comprises 180 molecules of the capsid protein. The CsCl buoyant density of the virion is 1.39–1.42 g/cm3 and S20w is 115–127S. Genome: CLRDV shares genomic features with other poleroviruses; its genome consists of monopartite, single-stranded, positive-sense RNA, is approximately 5.7–5.8 kb in length, and is composed of seven open reading frames (ORFs) with an intergenic region between ORF2 and ORF3a. Transmission: CLRDV is transmitted efficiently by the cotton aphid (Aphis gossypii Glover) in a circulative and nonpropagative manner. Host: CLRDV has a limited host range. Cotton is the primary host, and it has also been detected in different weeds in and around commercial cotton fields in Georgia, USA. Symptoms: Cotton plants infected early in the growth stage exhibit reddening or bronzing of foliage, maroon stems and petioles, and drooping. Plants infected in later growth stages exhibit intense green foliage with leaf rugosity, moderate to severe stunting, shortened internodes, and increased boll shedding/abortion, resulting in poor boll retention. These symptoms are variable and are probably influenced by the time of infection, plant growth stage, varieties, soil health, and geographical location. CLRDV is also often detected in symptomless plants. Control: Vector management with the application of chemical insecticides is ineffective. Some host plant varieties grown in South America are resistant, but all varieties grown in the United States are susceptible. Integrated disease management strategies, including weed management and removal of volunteer stalks, could reduce the abundance of virus inoculum in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号