首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3612篇
  免费   172篇
  国内免费   3篇
  2022年   14篇
  2021年   24篇
  2019年   25篇
  2018年   27篇
  2017年   26篇
  2016年   37篇
  2015年   79篇
  2014年   87篇
  2013年   277篇
  2012年   188篇
  2011年   181篇
  2010年   116篇
  2009年   107篇
  2008年   195篇
  2007年   194篇
  2006年   193篇
  2005年   199篇
  2004年   209篇
  2003年   229篇
  2002年   214篇
  2001年   50篇
  2000年   29篇
  1999年   58篇
  1998年   55篇
  1997年   57篇
  1996年   43篇
  1995年   42篇
  1994年   37篇
  1993年   29篇
  1992年   51篇
  1991年   41篇
  1990年   36篇
  1989年   37篇
  1988年   44篇
  1987年   39篇
  1986年   22篇
  1985年   35篇
  1984年   41篇
  1983年   43篇
  1982年   48篇
  1981年   39篇
  1980年   34篇
  1979年   26篇
  1978年   29篇
  1977年   24篇
  1976年   21篇
  1975年   23篇
  1974年   22篇
  1973年   13篇
  1970年   17篇
排序方式: 共有3787条查询结果,搜索用时 265 毫秒
941.
The abnormal accumulation of methylglyoxal (MG), a physiological glucose metabolite, is strongly related to the development of diabetic complications by affecting the metabolism and functions of organs and tissues. These disturbances could modify the cell response to hormones and growth factors, including insulin-like growth factor-1 (IGF-I). In this study, we investigated the effect of MG on IGF-I-induced cell proliferation and the mechanism of the effect in two cell lines, a human embryonic kidney cell line (HEK293), and a mouse fibroblast cell line (NIH3T3). MG rendered these cells resistant to the mitogenic action of IGF-I, and this was associated with stronger and prolonged activation of ERK and over-expression of P21(Waf1/Cip1). The synergistic effect of MG with IGF-I in activation of ERK was completely abolished by PD98059 but not by a specific PI3K inhibitor, LY294002, or a specific PKC inhibitor, bisindolylmaleimide. Blocking of Raf-1 activity by expression of a dominant negative form of Raf-1 did not reduce the enhancing effect of MG on IGF-I-induced activation of ERK. However, transfection of a catalytically inactive form of MEKK1 resulted in inactivation of the MG-induced activation of ERK and partial inhibition of the enhanced activation of ERK and over-expression of p21(Waf1/Cip1) induced by co-stimulation of MG and IGF-I. These results suggested that the alteration of intracellular milieu induced by MG through a MEKK1-mediated and PI3K/PKC/Raf-1-independent pathway resulted in the modification of cell response to IGF-I for p21(Waf1/Cip1)-mediated growth arrest, which may be one of the crucial mechanisms for MG to promote the development of chronic clinical complications in diabetes.  相似文献   
942.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   
943.
The goal of this study was to evaluate for evidence of oxidative stress in colonic inflammation in a novel model of inflammatory bowel disease, nonsteroidal anti-inflammatory drug- (NSAID-) treated interleukin-10-deficient (IL10(-/-)) mice. IL10(-/-) and wild-type (wt) mice were treated with a nonselective NSAID (piroxicam, 200 ppm in the diet) for 2 weeks to induce colitis, and parameters for oxidative stress in the colonic tissues were evaluated. Mean chemiluminescence enhanced with lucigenin in the colons from IL10(-/-) mice treated with piroxicam was more than 5-fold higher than that of the control wt group. Chemiluminescence was inhibited with diphenylethylene iodinium, but not allopurinol, indomethacin, or N-omega-nitro-L-arginine, indicating that flavin-containing enzymes were the source of the reactive oxygen species. Colonic aconitase activity in NSAID-treated IL10(-/-) mice decreased to 50% of the activity of control mice. There was no difference in the total glutathione levels in the colonic mucosa among the groups; however, glutathione disulfide levels were approximately 2-fold greater in the colon of NSAID-treated IL10(-/-) mice as compared with control groups. Immunohistochemistry studies of colons from NSAID-treated IL10(-/-) mice demonstrated intense staining with two antibodies that recognize advanced glycation endproducts formed through glycation and oxidation: anticarboxymethylysine and antipentosidine. The epithelial cells and lamina propria cells in the colons of NSAID-treated IL10(-/-) mice showed immunostaining with antinitrotyrosine, indicating the presence of reactive nitrogen species. Colonic epithelium of IL10(-/-) mice with colitis showed moderate immunostaining for 8-hydroxy-2'-deoxyguanosine in the nuclei. NSAID-treated IL10(-/-) mice treated with diphenylene idodonium chloride (DPI), an irreversible inhibitor of flavoprotein enzymes, experienced significantly reduced inflammation. Taken together, these results strongly indicate the presence of oxidative stress in the inflammatory bowel disease in NSAID-treated IL10(-/-) mice and suggests a role for oxidative stress in the pathophysiology of this model of inflammatory bowel disease.  相似文献   
944.
Melanin pigments produced in human melanocytes are classified into two categories; black coloured eumelanin and reddish-yellow pheomelanin. Stimulation of melanocytes with alpha-melanocyte-stimulating hormone (alpha-MSH), one of several melanogenic factors, has been reported to enhance eumelanogenesis to a greater degree than pheomelanogenesis, which contributes to hyperpigmentation in skin. Nitric oxide (NO) and histamine are also melanogenesis-stimulating factors that are released from cells surrounding melanocytes following ultraviolet (UV) irradiation. In this study, the effects of NO and histamine on the ratio of eumelanin and pheomelanin were examined in human melanocytes, and then compared with that of alpha-MSH. The amounts of eumelanin and pheomelanin were quantified using high-performance liquid chromatography analysis after oxidation and hydrolysis of melanin. Melanogenesis was induced by the addition of alpha-MSH, NO, or histamine to melanocytes. The amount of eumelanin production significantly increased with independent stimulation by these melanogenic factors, especially histamine, while that of pheomelanin significantly increased with alpha-MSH and NO, but only slightly with histamine. As a result, the ratio of eumelanin and pheomelanin increased significantly with the addition of NO or histamine. These results suggest that NO and histamine, as in the case of alpha-MSH, may contribute to UV-induced hyperpigmentation by enhancing eumelanogenesis.  相似文献   
945.
The two-subunit meta-cleavage enzyme, 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase (CarBaBb), from the carbazole degrader Pseudomonas resinovorans strain CA10 was purified to homogeneity from an Escherichia coli strain carrying the expression vector pUCA503, in which two copies of the carBaBb genes are tandemly linked. SDS-PAGE and gel filtration showed that CarB was a alpha2beta2-heterotetrameric enzyme with subunit molecular masses of approximately 10,000 for CarBa and 29,000 for CarBb. The optimum pH for activity was 8.5 and that of temperature was 35 degrees C. The CarB enzyme had a Km of 14 microM and a kcat/Km of 0.25 microM(-1) s(-1) for 2'-aminobiphenyl-2,3-diol, and the catalytic activities for biphenyl-type catecholic substrates were higher than those for monoaromatic catechol derivatives. The enzyme was originally isolated as a meta-cleavage enzyme for 2'-aminobiphenyl-2,3-diol involved in carbazole degradation, but the enzyme was highly specific for 2,3-dihydroxybiphenyl.  相似文献   
946.
S-1360, a 1,3-diketone derivative, was the first HIV integrase inhibitor to enter human trials. Clinical data suggested involvement of non-cytochrome P450 clearance pathways, including reduction and glucuronidation. Reduction of S-1360 generates a key metabolite in humans, designated HP1, and constitutes a major clearance pathway. For characterization of subcellular location and cofactor dependence of HP1 formation, [(14)C]-S-1360 was incubated with commercially available pooled human liver fractions, including microsomes, cytosol, and mitochondria, followed by HPLC analysis with radiochemical detection. Incubations were performed in the presence and absence of the cofactors NADH or NADPH. Results showed that the enzyme system responsible for generation of HP1 in vitro is cytosolic and NADPH-dependent, implicating aldo-keto reductases (AKRs) and/or short-chain dehydrogenases/reductases (SDRs). A validated LC/MS/MS method was developed for investigating the reduction of S-1360 in detail. The reduction reaction exhibited sigmoidal kinetics with a K(m,app) of 2 microM and a Hill coefficient of 2. The ratio of V(max)/K(m) was approximately 1 ml/(min mg cytosolic protein). The S-1360 kinetic data were consistent with positive cooperativity and a single enzyme system. The relative contributions of AKRs and SDRs were examined through the use of chemical inhibitors. For these experiments, non-radiolabeled S-1360 was incubated with pooled human liver cytosol and NADPH in the presence of inhibitors, followed by quantitation of HP1 by LC/MS/MS. Quercetin and menadione produced approximately 30% inhibition at a concentration of 100 microM. Enzymes sensitive to these inhibitors include the carbonyl reductases (CRs), a subset of the SDR enzyme family predominantly located in the cytosol. Flufenamic acid and phenolphthalein were the most potent inhibitors, with > 67% inhibition at a concentration of 20 microM, implicating the AKR enzyme family. The cofactor dependence, subcellular location, and chemical inhibitor results implicated the aldo-keto reductase family of enzymes as the most likely pathway for generation of the major metabolite HP1 from S-1360.  相似文献   
947.
948.
949.
950.
We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells.These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号