首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1451篇
  免费   130篇
  国内免费   1篇
  2022年   20篇
  2021年   37篇
  2020年   29篇
  2019年   18篇
  2018年   25篇
  2017年   16篇
  2016年   38篇
  2015年   67篇
  2014年   82篇
  2013年   95篇
  2012年   106篇
  2011年   101篇
  2010年   83篇
  2009年   53篇
  2008年   65篇
  2007年   76篇
  2006年   80篇
  2005年   68篇
  2004年   79篇
  2003年   60篇
  2002年   66篇
  2001年   16篇
  2000年   15篇
  1999年   15篇
  1998年   16篇
  1997年   12篇
  1996年   7篇
  1995年   13篇
  1994年   7篇
  1993年   11篇
  1992年   13篇
  1991年   13篇
  1990年   7篇
  1989年   5篇
  1988年   9篇
  1987年   14篇
  1986年   11篇
  1985年   6篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1977年   10篇
  1974年   5篇
  1973年   7篇
  1971年   6篇
  1969年   5篇
排序方式: 共有1582条查询结果,搜索用时 15 毫秒
141.
Joy DA  Craig DA  Conn JE 《Heredity》2007,99(4):452-459
Geographic isolation is widely viewed as a key component of insular radiations on islands. However, strong ecological affinities may also reinforce isolation and promote genetic divergence. The black fly fauna in the Society Islands French Polynesia is notable for the number of closely related endemic species (31), and the morphological and habitat diversity of the larvae. Here, we measure ecological and morphological differences within and between two closely related species, Simulium oviceps and Simulium dussertorum and relate these differences to genetic distance. Phylogenetic analyses of a 920 bp fragment of the cytochrome oxidase I (COI) gene revealed a well-supported, ecologically divergent S. oviceps clade (larvae found in rivers instead of cascades) that shows little morphological differentiation. For both S. oviceps and S. dussertorum, genetic distance among populations is related to larval habitat, with cascade populations showing greater isolation from each other than river populations. Our data support the hypothesis that larval ecological shifts have played a role in the radiation of this black fly fauna.  相似文献   
142.
Bone is a complex, highly structured, mechanically active, three-dimensional (3-D) tissue composed of cellular and matrix elements. We previously published a report on in situ collagen gelation using a rotary 3-D culture system (CG–RC system) for the construction of large tissue specimens. The objective of the current study was to evaluate the feasibility of bone tissue engineering using our CG–RC system. Osteoblasts from the calvaria of newborn Wistar rats were cultured in the CG–RC system for up to 3 wk. The engineered 3-D tissues were implanted into the backs of nude mice and calvarial round bone defects in Wistar rats. Cell metabolic activity, mineralization, and bone-related proteins were measured in vitro in the engineered 3-D tissues. Also, the in vivo histological features of the transplanted, engineered 3-D tissues were evaluated in the animal models. We found that metabolic activity increased in the engineered 3-D tissues during cultivation, and that sufficient mineralization occurred during the 3 wk in the CG–RC system in vitro. One mo posttransplantation, the transplants to nude mice remained mineralized and were well invaded by host vasculature. Of particular interest, 2 mo posttransplantation, the transplants into the calvarial bone defects of rats were replaced by new mature bone. Thus, this study shows that large 3-D osseous tissue could be produced in vitro and that the engineered 3-D tissue had in vivo osteoinductive potential when transplanted into ectopic locations and into bone defects. Therefore, this system should be a useful model for bone tissue engineering.  相似文献   
143.
Molecular chaperones including the small heat shock proteins, alphaB crystallin and sHSP27 participate in the assembly, disassembly, and reorganization of the cytoskeleton during cell development and differentiation. While alphaB crystallin and sHSP27 stabilize and modulate filament assembly and re-organization, the sequences and structural domains mediating interactions between these proteins and filaments are unknown. It is important to define these interactive domains in order to understand differential interactions between chaperones and stable or unfolding filaments and their function in the cellular stress response. Protein pin arrays identified sequences in human alphaB crystallin that selectively interacted with native or partially unfolded filament proteins desmin, glial-fibrillary acidic protein, and actin. Circular dichroism spectroscopy determined differences in the structure of these filaments at 23 and 45 degrees C. Seven alphaB crystallin sequences had stronger interactions with desmin and six sequences had stronger interactions with glial-fibrillary acidic protein at 23 degrees C than at 45 degrees C. The alphaB crystallin sequences (33)LESDLFPTSTSLSPFYLRPPSFLR(56) and (129)DPLTITSSLSSDGV(145) had the strongest interactions with actin at 23 degrees C, while (57)APSWFDTG(64), (111)HGFISREF(118), (145)VNGPRKQVSG(154), and (155)PERTIPITREEK(165) had the strongest interactions with actin at 45 degrees C. The actin interactive sequences of alphaB crystallin overlapped with previously identified alphaB crystallin chaperone sequences and were synthesized to evaluate their effect on the assembly and aggregation of actin. Full-length alphaB crystallin and the core domain chaperone sequence (131)LTITSSLSSDGV(143) promoted actin polymerization at 37 degrees C and inhibited depolymerization and aggregation at 50 degrees C. The results support the hypothesis that interactive domains in alphaB crystallin have multiple functions in stabilizing the cytoskeleton and protecting cytosolic proteins from unfolding.  相似文献   
144.
Ghosh KS  Maiti TK  Debnath J  Dasgupta S 《Proteins》2007,69(3):566-580
We report the effect of the natural polyphenolic compounds from green tea on the catalytic activity of Ribonuclease A (RNase A). The compounds behave as noncompetitive inhibitors of the protein with inhibition constants ranging from 80-1300 microM. The dissociation constants range from 50-150 microM for the RNase A-polyphenol complexes as determined by ultraviolet (UV) and circular dichroism (CD) studies. We have also investigated the changes in the secondary structure of RNase A on complex formation by CD and Fourier transformed infrared (FTIR) spectroscopy. The presence of the gallate moiety has been shown to be important for the inhibition of enzymatic activity. Docking studies for these compounds indicate that the preferred site of binding is the region encompassing residues 34-39 with possible hydrogen bonding with Lys 7 and Arg 10. Finally we have also looked at changes in the accessible surface area of the interacting residues on complex formation for an insight into the residues involved in the interaction.  相似文献   
145.
Invasive plants that most threaten biodiversity are those that rapidly form a monospecific stand, like the clonal grass, Phalaris arundinacea. Understanding complex and potentially interacting factors that are common in urban and agricultural landscapes and underlie rapid invasions requires an experimental, factorial approach. We tested the effects of flooding and nutrient and sediment additions (3 × 3 × 3 = 27 treatments, plus a control with no additions) on invasion of Phalaris into mesocosms containing wet prairie vegetation. We discovered a three-step invasion and degradation process: (1) initially, resident native species declined with prolonged flooding and sediment additions, and (2) prolonged flooding, sedimentation, and nutrients accelerated Phalaris aboveground growth; biomass rose to 430 times that of the control within just two growing seasons. The dramatic expansion of Phalaris in the second year resulted in the formation of monospecific stands in over one-third of the treatments, as (3) native species continued their decline in year 2. Disturbances acted alone and in combination to make the resident wetland community more invasible and Phalaris more aggressive, leading to monospecific stands. Yet, Phalaris did not always “win”: under the least disturbed conditions, the resident plant canopy remained dense and vigorous and Phalaris remained small. When anthropogenic disturbances coincide with increases in the gross supply of resources, more tolerant, fast-growing, and morphologically plastic plants like Phalaris can invade very rapidly. The fluctuating resource hypothesis should thus be refined to consider the role of interacting disturbances in facilitating invasions.  相似文献   
146.
Reviews in Fish Biology and Fisheries - Humans have relied on coastal resources for centuries. However, current growth in population and increased accessibility of coastal resources through...  相似文献   
147.
148.
149.

Background

Clostridium difficile and C. sordellii are two anaerobic, spore forming, gram positive pathogens with a broad host range and the ability to cause lethal infections. Despite strong similarities between the two Clostridial strains, differences in their host tissue preference place C. difficile infections in the gastrointestinal tract and C. sordellii infections in soft tissues.

Results

In this study, to improve our understanding of C. sordellii and C. difficile virulence and pathogenesis, we have performed a comparative genomic and phenomic analysis of the two. The global phenomes of C. difficile and C. sordellii were compared using Biolog Phenotype microarrays. When compared to C. difficile, C. sordellii was found to better utilize more complex sources of carbon and nitrogen, including peptides. Phenotype microarray comparison also revealed that C. sordellii was better able to grow in acidic pH conditions. Using next generation sequencing technology, we determined the draft genome of C. sordellii strain 8483 and performed comparative genome analysis with C. difficile and other Clostridial genomes. Comparative genome analysis revealed the presence of several enzymes, including the urease gene cluster, specific to the C. sordellii genome that confer the ability of expanded peptide utilization and survival in acidic pH.

Conclusions

The identified phenotypes of C. sordellii might be important in causing wound and vaginal infections respectively. Proteins involved in the metabolic differences between C. sordellii and C. difficile should be targets for further studies aimed at understanding C. difficile and C. sordellii infection site specificity and pathogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1663-5) contains supplementary material, which is available to authorized users.  相似文献   
150.

Background

Historically, the main focus of studies of childhood mortality has been the infant and under-five mortality rates. Neonatal mortality (deaths <28 days of age) has received limited attention, although such deaths account for about 41% of all child deaths. To better assess progress, we developed annual estimates for neonatal mortality rates (NMRs) and neonatal deaths for 193 countries for the period 1990–2009 with forecasts into the future.

Methods and Findings

We compiled a database of mortality in neonates and children (<5 years) comprising 3,551 country-years of information. Reliable civil registration data from 1990 to 2009 were available for 38 countries. A statistical model was developed to estimate NMRs for the remaining 155 countries, 17 of which had no national data. Country consultation was undertaken to identify data inputs and review estimates. In 2009, an estimated 3.3 million babies died in the first month of life—compared with 4.6 million neonatal deaths in 1990—and more than half of all neonatal deaths occurred in five countries of the world (44% of global livebirths): India 27.8% (19.6% of global livebirths), Nigeria 7.2% (4.5%), Pakistan 6.9% (4.0%), China 6.4% (13.4%), and Democratic Republic of the Congo 4.6% (2.1%). Between 1990 and 2009, the global NMR declined by 28% from 33.2 deaths per 1,000 livebirths to 23.9. The proportion of child deaths that are in the neonatal period increased in all regions of the world, and globally is now 41%. While NMRs were halved in some regions of the world, Africa''s NMR only dropped 17.6% (43.6 to 35.9).

Conclusions

Neonatal mortality has declined in all world regions. Progress has been slowest in the regions with high NMRs. Global health programs need to address neonatal deaths more effectively if Millennium Development Goal 4 (two-thirds reduction in child mortality) is to be achieved. Please see later in the article for the Editors'' Summary  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号