首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   44篇
  2023年   9篇
  2022年   18篇
  2021年   36篇
  2020年   19篇
  2019年   9篇
  2018年   38篇
  2017年   22篇
  2016年   29篇
  2015年   51篇
  2014年   65篇
  2013年   82篇
  2012年   73篇
  2011年   72篇
  2010年   44篇
  2009年   33篇
  2008年   54篇
  2007年   49篇
  2006年   45篇
  2005年   37篇
  2004年   31篇
  2003年   34篇
  2002年   27篇
  2001年   19篇
  2000年   14篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1955年   1篇
排序方式: 共有977条查询结果,搜索用时 15 毫秒
51.
We describe the morphology of toe pads in the Himalayan tree frog Philautus annandalii. These are expanded tips of digits and show modifications of their ventral epidermis for adhesion. The outer cells of toe pad epidermis (TPE) bear surface microstructures (0.7 × 0.2 μm), which are keratinized. Their cytoplasm contains no organelles, but pleomorphic nuclei and mucous granules (0.4–0.5 μm) that glue the keratin filaments. In the intermediate cell layer of TPE, similar keratinized microstructures as in the outer cells are present, so that when the outer layer is shed, it is ready with features for adhesion. These cells contain more keratin than the outer cells. The basal cell layer contains thin keratin bundles and usual cell organelles. The dermis contains mucous‐secreting glands, whose ducts open in the outer epidermal cell layer in channels. The dorsal epidermal cells lack surface microstructures and keratin bundles. Ultrastructural features suggest that toe pads utilize the surface microstructures for adhesion aided by mucus, in which the intermediate cell layer seems to bear the shear stress generated during locomotion. Further, TPE can expand and fit into an increased contact area of the substrate. The long, surface microstructures may also help in mechanical interlocking with rough surfaces on plants.  相似文献   
52.
The membrane environment, its composition, dynamics, and remodeling, have been shown to participate in the function and organization of a wide variety of transmembrane (TM) proteins, making it necessary to study the molecular mechanisms of such proteins in the context of their membrane settings. We review some recent conceptual advances enabling such studies, and corresponding computational models and tools designed to facilitate the concerted experimental and computational investigation of protein-membrane interactions. To connect productively with the high resolution achieved by cognate experimental approaches, the computational methods must offer quantitative data at an atomistically detailed level. We show how such a quantitative method illuminated the mechanistic importance of a structural characteristic of multihelical TM proteins, that is, the likely presence of adjacent polar and hydrophobic residues at the protein-membrane interface. Such adjacency can preclude the complete alleviation of the well-known hydrophobic mismatch between TM proteins and the surrounding membrane, giving rise to an energy cost of residual hydrophobic mismatch. The energy cost and biophysical formulation of hydrophobic mismatch and residual hydrophobic mismatch are reviewed in the context of their mechanistic role in the function of prototypical members of multihelical TM protein families: 1), LeuT, a bacterial homolog of mammalian neurotransmitter sodium symporters; and 2), rhodopsin and the β1- and β2-adrenergic receptors from the G-protein coupled receptor family. The type of computational analysis provided by these examples is poised to translate the rapidly growing structural data for the many TM protein families that are of great importance to cell function into ever more incisive insights into mechanisms driven by protein-ligand and protein-protein interactions in the membrane environment.  相似文献   
53.
The membrane environment, its composition, dynamics, and remodeling, have been shown to participate in the function and organization of a wide variety of transmembrane (TM) proteins, making it necessary to study the molecular mechanisms of such proteins in the context of their membrane settings. We review some recent conceptual advances enabling such studies, and corresponding computational models and tools designed to facilitate the concerted experimental and computational investigation of protein-membrane interactions. To connect productively with the high resolution achieved by cognate experimental approaches, the computational methods must offer quantitative data at an atomistically detailed level. We show how such a quantitative method illuminated the mechanistic importance of a structural characteristic of multihelical TM proteins, that is, the likely presence of adjacent polar and hydrophobic residues at the protein-membrane interface. Such adjacency can preclude the complete alleviation of the well-known hydrophobic mismatch between TM proteins and the surrounding membrane, giving rise to an energy cost of residual hydrophobic mismatch. The energy cost and biophysical formulation of hydrophobic mismatch and residual hydrophobic mismatch are reviewed in the context of their mechanistic role in the function of prototypical members of multihelical TM protein families: 1), LeuT, a bacterial homolog of mammalian neurotransmitter sodium symporters; and 2), rhodopsin and the β1- and β2-adrenergic receptors from the G-protein coupled receptor family. The type of computational analysis provided by these examples is poised to translate the rapidly growing structural data for the many TM protein families that are of great importance to cell function into ever more incisive insights into mechanisms driven by protein-ligand and protein-protein interactions in the membrane environment.  相似文献   
54.
55.
Dysmetabolic state in diabetes may lead to augmented synthesis of extracellular matrix (ECM) proteins. In the endothelial cells, we have previously demonstrated that glucose-induced fibronectin (FN) production and that of its splice variant, EDB(+)FN, is regulated by protein kinase B (PKB, also known as Akt). In this study, we investigated the role of Akt1 in ECM protein production in the organs affected by chronic diabetic complications. We studied Akt1/PKBalpha knockout mice and wild-type control littermates. To avoid confounding effects of systemic insulin, we used 30% galactose feeding to induce hyperhexosemia for 8 wk starting at 6 wk of age. We investigated FN mRNA, EDB(+)FN mRNA, and transforming growth factor (TGF)-beta mRNA expression, Akt phosphorylation, Akt kinase activity, and NF-kappaB and AP-1 activation in the retina, heart, and kidney. Renal and cardiac tissues were histologically examined. Galactose feeding caused significant upregulation of FN, EDB(+)FN, and TGF-beta in all tissues. FN protein levels paralleled mRNA. Such upregulation were prevented in Akt1-deficient galactose-fed mice. Galactose feeding caused ECM protein deposition in the glomeruli and in the myocardium, which was prevented in the Akt knockout mice. NF-kappaB and AP-1 activation was pronounced in galactose-fed wild-type mice and prevented in the galactose-fed Akt1/PKBalpha-deficient group. In the retina and kidney, Ser473 was the predominant site for Akt phosphorylation, whereas in the heart it was Thr308. Parallel experiment in streptozotocin-induced diabetic animals showed similar results. The data from this study indicate that hyperhexosemia-induced Akt/PKB activation may be an important mechanism leading to NF-kappaB and AP-1 activation and increased ECM protein synthesis in the organs affected by chronic diabetic complications.  相似文献   
56.
57.
The trinuclear complex [L2Cu3(CF3CO2)4] (1) has been synthesized and its crystal structure determined. It consists of a linear arrangement of Cu(II) centers. The central copper atom is bonded to six oxygen atoms and has a tetragonally distorted octahedral geometry, while the terminal copper atoms are bonded to three oxygen and two nitrogen atoms and show a distorted square pyramidal geometry. The complex shows di-μ(O,O′) syn-syn carboxylate bridging as well as monoatomic (μ-O) bridging, along with phenolate (μ-O) oxygen bridging. Cryomagnetic investigations in the range 2-300 K revealed an antiferromagnetic spin exchange interaction with J = −95.7 cm−1, based on the isotropic exchange model Hex = −2J[S1 · S2 + S2 · S3].  相似文献   
58.
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35–38%), 4p15.2 (D3: 37–40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37–59%) and 4q35.1 (D6: 40–50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri →CIN → CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (−432 to + 55 bp), CC and AA haplotypes were seen in −227 and −195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.  相似文献   
59.
60.
Aurora-A is an oncogenic kinase that plays essential roles in mitosis as well as cell survival. Aurora-A interacting protein (AIP) was identified as a negative regulator of Aurora-A with its ectopic over expression inducing destabilization of Aurora-A protein. Here we present evidence that in human cells, contrary to the earlier report, AIP functions in stabilizing rather than destabilizing Aurora-A. Furthermore, AIP is phosphorylated on Serine 70 by Aurora-A but not Aurora-B and expression of phosphorylation mimic mutant of AIP results in prolonged protein stability compared to unphosphorylatable mutant. We observed that when co-expressed with AIP, protein levels of both Aurora-A and Aurora-B are markedly elevated regardless of their kinase activities and phosphorylation state of AIP. Interaction of Aurora kinases with AIP is necessary for this elevated stability. This phenomenon is commonly detected in several human cancer cell lines used in this study. Depletion of AIP by RNA interference decreased Aurora-A but not Aurora-B in two of the three cell lines analyzed, indicating that under physiological condition, AIP functions in stabilization of Aurora-A but not Aurora-B, though this regulation may be dependent on additional factors as well. Further, AIP siRNA induced cell cycle arrest at G2/M, which is consistent with anticipated loss of function of Aurora-A in these cells. Thus, our study provides the first evidence of a role for AIP in G2/M cell cycle progression by cooperatively regulating protein stabilization of its up-stream regulator, Aurora-A kinase through protein-protein interaction as well as protein phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号