首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   8篇
  106篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   14篇
  2012年   7篇
  2011年   19篇
  2010年   8篇
  2009年   8篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
81.
The water-soluble vitamin biotin is essential for normal cellular functions and its deficiency leads to a variety of clinical abnormalities. Mammals obtain biotin from exogenous sources via intestinal absorption, a process mediated by the sodium-dependent multivitamin transporter (SMVT). Chronic alcohol use in humans is associated with a significant reduction in plasma biotin levels, and animal studies have shown inhibition in intestinal biotin absorption by chronic alcohol feeding. Little, however, is known about the cellular and molecular mechanisms involved in the inhibition in intestinal biotin transport by chronic alcohol use. These mechanisms were investigated in this study by using rats and transgenic mice carrying the human full-length SLC5A6 5'-regulatory region chronically fed alcohol liquid diets; human intestinal epithelial Caco-2 cells chronically exposed to alcohol were also used as models. The results showed chronic alcohol feeding of rats to lead to a significant inhibition in carrier-mediated biotin transport events across jejunal brush border and basolateral membrane domains. This inhibition was associated with a significant reduction in level of expression of the SMVT protein, mRNA, and heterogenous nuclear RNA. Chronic alcohol feeding also inhibited carrier-mediated biotin uptake in rat colon. Studies with transgenic mice confirmed the above findings and further showed chronic alcohol feeding significantly inhibited the activity of SLC5A6 5'-regulatory region. Finally, chronic exposure of Caco-2 cells to alcohol led to a significant decrease in the activity of both promoters P1 and P2 of the human SLC5A6 gene. These studies identify for the first time the cellular and molecular parameters of the intestinal biotin absorptive processes that are affected by chronic alcohol feeding.  相似文献   
82.
Estimates of fungal biodiversity from environmental samples are all subject to bias. Major issues are that the commonly adopted cultivation-based approaches are suitable for taxa which grow readily under laboratory conditions, while the DNA-based approaches provide more reliable estimates, but do not indicate whether taxa are metabolically active. In this study, we have evaluated these approaches to estimate the fungal diversity in soil and freshwater samples from a subtropical forest, and compared these to RNA-based culture-independent approach intended to indicate the metabolically active fungal assemblage. In both soil and freshwater samples, the dominant taxon recovered by all three approaches was the same (Anguillospora furtiva). This taxon was cultivable from all samples and comprised 85–86 % DNA libraries and 90–91 % RNA libraries. The remaining taxa were phylogenetically diverse and spanned the Ascomycota, Basidiomycota, and Fungi incertae sedis. Their recovery was not consistent among the three approaches used and suggests that less abundant members of the assemblage may be subjected to greater bias when diversity estimates employ a single approach.  相似文献   
83.
Thiamin is essential for normal function of pancreatic acinar cells, and its deficiency leads to a reduction in pancreatic digestive enzymes. We have recently shown that thiamin uptake by rat pancreatic acinar cells is carrier-mediated and that both thiamin transporter (THTR)-1 and THTR-2 are expressed in these cells; little, however, is known about the relative contribution of these transporters toward total carrier-mediated thiamin uptake by these cells. We addressed this issue using a gene-specific silencing approach (siRNA) in mouse-derived pancreatic acinar 266-6 cells and Slc19a2 and Slc19a3 knockout mouse models. First we established that thiamin uptake by mouse pancreatic acinar cells is via a carrier-mediated process. We also established that these cells as well as native human pancreas express THTR-1 and THTR-2, with expression of the former (and activity of its promoter) being significantly higher than that of the latter. Using gene-specific siRNA against mouse THTR-1 and THTR-2, we observed a significant inhibition in carrier-mediated thiamin uptake by 266-6 cells in both cases. Similarly, thiamin uptake by freshly isolated primary pancreatic acinar cells of the Slc19a2 and Slc19a3 knockout mice was significantly lower than uptake by acinar cells of the respective littermates; the degree of inhibition observed in the former knockout model was greater than that of the latter. These findings demonstrate, for the first time, that both mTHTR-1 and mTHTR-2 are involved in carrier-mediated thiamin uptake by pancreatic acinar cells.  相似文献   
84.
Post ‘omic’ era has resulted in the development of many primary, secondary and derived databases. Many analytical and visualization bioinformatics tools have been developed to manage and analyze the data available through large sequencing projects. Availability of heterogeneous databases and tools make it difficult for researchers to access information from varied sources and run different bioinformatics tools to get desired analysis done. Building integrated bioinformatics platforms is one of the most challenging tasks that bioinformatics community is facing. Integration of various databases, tools and algorithm is a challenging problem to deal with. This article describes the bioinformatics analysis workflow management systems that are developed in the area of gene sequence analysis and phylogeny. This article will be useful for biotechnologists, molecular biologists, computer scientists and statisticians engaged in computational biology and bioinformatics research.  相似文献   
85.
A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.  相似文献   
86.
87.
Taxol binds to polymerized tubulin in vitro   总被引:12,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   
88.
Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide- (NAD+) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1 with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD+-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis.  相似文献   
89.
INTRODUCTIONAsearlyasin1948wehavefr8CtionatedisolatednucleifromnormalandtumorcellsbyextractionwithiMNaCIanddilutealkali[1].Thenuclearresiduewasthenstudiedmorethoroughly[2,3].Lateron,sillillarproteinousnuclearresidueswereisolatedbyotherworkers[46]andasstud…  相似文献   
90.
The protozoan parasite Trypanosoma brucei lives in the bloodstream of vertebrates or in a tsetse fly. Expression of a GPI-phospholipase C polypeptide (GPI-PLCp) in the parasite is restricted to the bloodstream form. Events controlling the amount of GPI-PLCp expressed during differentiation are not completely understood. Our metabolic “pulse-chase” analysis reveals that GPI-PLCp is stable in bloodstream form. However, during differentiation of bloodstream to insect stage (procyclic) T. brucei, translation GPI-PLC mRNA ceases within 8 h of initiating transformation. GPI-PLCp is not lost precipitously from newly transformed procyclic trypanosomes. Nascent procyclics contain 400-fold more GPI-PLCp than established insect stage T. brucei. Reduction of GPI-PLCp in early-stage procyclics is linked to parasite replication. Sixteen cell divisions are required to reduce the amount of GPI-PLCp in newly differentiated procyclics to levels present in the established procyclic. GPI-PLCp is retained in strains of T. brucei that fail to replicate after differentiation of the bloodstream to the procyclic form. Thus, at least two factors control levels of GPI-PLCp during differentiation of bloodstream T. brucei; (i) repression of GPI-PLC mRNA translation, and (ii) sustained replication of newly transformed procyclic T. brucei. These studies illustrate the importance of repeated cell divisions in controlling the steady-state amount of GPI-PLCp during differentiation of the African trypanosome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号