首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   22篇
  2022年   3篇
  2021年   10篇
  2020年   8篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   8篇
  2014年   19篇
  2013年   19篇
  2012年   28篇
  2011年   28篇
  2010年   10篇
  2009年   23篇
  2008年   29篇
  2007年   11篇
  2006年   7篇
  2005年   18篇
  2004年   10篇
  2003年   13篇
  2002年   15篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   4篇
  1978年   2篇
排序方式: 共有320条查询结果,搜索用时 750 毫秒
291.
We have studied the binding of hemoglobin to the red cell membrane by centrifugation and fluorescence methods. The intact red cell was labeled with eosin-5-maleimide (EM), which specifically reacts with lysine 430 of band 3. Even though this residue is not part of the cytoplasmic domain of band 3 (cdb3) associated with hemoglobin binding, fluorescence quenching was observed when hemoglobin bound to inside-out vesicles (IOVs). The use of fluorescence quenching to measure band 3 binding was quantitatively compared with the binding determined by centrifugation, which measures binding to band 3 and non-band 3 sites. For the centrifugation it was necessary to include the non-band 3 association constants determined from chymotrypsin-treated IOVs. The binding of hemoglobin to band 3 was interpreted in terms of the binding of two hemoglobin tetramers to each band 3 dimer. An anticooperative interaction associated with the conformational change produced when hemoglobin binds results in a 2.8-fold decrease in the intrinsic constant of (1.54 +/- 0.25) x 10(7) M(-1) for the binding of the second hemoglobin molecule. From the changes in lifetime produced by binding the first and second hemoglobin molecules, it was possible to show that the conformational change associated with binding the second hemoglobin molecule results in a decrease of the heme-eosin distance from 47.90 to 44.78 A. Reaction of cyanate with the alpha-amino group of hemoglobin (HbOCN) is shown to produce a very dramatic decrease in the binding of hemoglobin to both the band 3 and non-band 3 sites. The intrinsic constant for binding the first hemoglobin molecule to band 3 decreases by a factor of 29 to (5.34 +/- 0.15) x 10(5) M(-1). The anticooperative interaction is greater with the intrinsic constant decreasing by a factor of 3.8 for the binding of the second hemoglobin tetramer to band 3. In addition, the nature of the conformational change produced by binding hemoglobin is very different with the second HbOCN increasing the heme-eosin distance to 55.99 A. The utilization of eosin-5-maleimide-reacted red cell membrane to study hemoglobin binding makes it possible to directly study the binding to band 3. At the same time a sensitive probe of the conformational changes, which occur when hemoglobin binds to band 3, is provided.  相似文献   
292.
The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion.  相似文献   
293.
Headpin is a novel serine proteinase inhibitor (serpin) that is downregulated in many established HNSCC tumor cell lines and human oral SCC specimens. The use of the bacterial and yeast expression systems for headpin resulted in poor yields and proteins with low inhibitory activity. To circumvent these problems, we have developed a baculovirus-insect cell system for high-yield expression as well as fully functional protein. Here, we describe the strategies and methods used to express headpin in an insect cell heterologous system. In addition, procedures to purify the recombinant proteins are described. A metal affinity column followed by a gel-filtration chromatography provides a rapid and efficient method for large quantity preparation of headpin. This method should be useful as an alternative expression system for those serpins that are not purifiable when expressed using the Escherichia coli or yeast expression system.  相似文献   
294.
Arterial injury-induced vascular smooth muscle cell (VSMC) proliferation in intima is the important etiologic factor in vascular proliferative disorders such as atherosclerosis, hypertension and restenosis after balloon angioplasty. Butyrate, a naturally occurring short chain fatty acid, is produced by bacterial fermentation of dietary fiber and by mammary glands of certain mammals. Studies have shown that butyrate at millimolar concentrations, which are physiological, induces growth arrest, differentiation and apoptosis. We examined the effect of physiological concentrations of butyrate on rat VSMC proliferation and proliferation-induced PCNA expression to determine anti-atherogenic potential of butyrate. Butyrate concentrations, closer to physiological range, exhibited antiproliferative effects on both serum-induced proliferation of serum-starved quiescent VSMCs and actively proliferating non-confluent VSMCs. Treatment of serum-starved quiescent VSMCs with 1-8 mmol/l concentration of butyrate caused a concentration-dependent decrease in serum-induced VSMC proliferation and cell proliferation-associated increase in total cellular proteins and RNA levels. Similarly, exposure of actively growing VSMCs to 5 mmol/l butyrate resulted in the inhibition of cell proliferation and proliferation-induced increase in cellular proteins and RNA levels. Furthermore, cellular morphology was significantly altered. Analysis of cell cycle regulatory proteins indicated that levels of PCNA, an excellent marker for cell proliferation, was significantly altered by butyrate both in actively proliferating and serum-induced quiescent VSMCs. These observations suggest that butyrate exhibits potential antiatherogenic capability by inhibiting VSMC proliferation and proliferation-associated increase in PCNA expression and thus merits further investigations regarding therapeutic significance of butyrate in vascular proliferative disorders.  相似文献   
295.
296.
297.
The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126), was determined using circular dichroism (CD) spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication). These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126) adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126) peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable β-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126) increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126) exhibited β-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu2+ ions inhibited the structural transition and fibril formation of the peptide in a cell free in vitro system. The fact that Cu2+ supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126) was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu2+ ions. The toxicity of PrP(111-126) to cultured astrocytes was reduced following the addition of Cu2+ ions, owing to binding affinity of copper towards histidine moiety present in the peptide.  相似文献   
298.
The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B+/− mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.  相似文献   
299.
300.
Astrocyte swelling and the subsequent increase in intracranial pressure and brain herniation are major clinical consequences in patients with acute hepatic encephalopathy. We recently reported that conditioned media from brain endothelial cells (ECs) exposed to ammonia, a mixture of cytokines (CKs) or lipopolysaccharide (LPS), when added to astrocytes caused cell swelling. In this study, we investigated the possibility that ammonia and inflammatory agents activate the toll‐like receptor 4 (TLR4) in ECs, resulting in the release of factors that ultimately cause astrocyte swelling. We found a significant increase in TLR4 protein expression when ECs were exposed to ammonia, CKs or LPS alone, while exposure of ECs to a combination of these agents potentiate such effects. In addition, astrocytes exposed to conditioned media from TLR4‐silenced ECs that were treated with ammonia, CKs or LPS, resulted in a significant reduction in astrocyte swelling. TLR4 protein up‐regulation was also detected in rat brain ECs after treatment with the liver toxin thioacetamide, and that thioacetamide‐treated TLR4 knock‐out mice exhibited a reduction in brain edema. These studies strongly suggest that ECs significantly contribute to the astrocyte swelling/brain edema in acute hepatic encephalopathy, likely as a consequence of increased TLR4 protein expression by blood‐borne noxious agents.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号