首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   22篇
  2022年   3篇
  2021年   10篇
  2020年   8篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   8篇
  2014年   19篇
  2013年   19篇
  2012年   28篇
  2011年   28篇
  2010年   10篇
  2009年   23篇
  2008年   29篇
  2007年   11篇
  2006年   7篇
  2005年   18篇
  2004年   10篇
  2003年   13篇
  2002年   15篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1979年   4篇
  1978年   2篇
排序方式: 共有320条查询结果,搜索用时 15 毫秒
211.
212.
The present work is aimed at evaluating the protective effect of the oyster mushroom, Pleurotus ostreatus on carbon tetrachloride (CCl4)-induced toxicity in male Wistar rats. Significantly elevated mean levels (p<0.05) of malondialdehyde (MDA) and lowered mean levels (p<0.01) of reduced glutathione (GSH), vitamins C and E (p<0.05) were observed in kidneys, heart and brain of rats exposed to CCl4, when compared to values in normal rats. Quantitative and qualitative analysis of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (Gpx) and glutathione-S-transferase (GST) revealed lower activities of these antioxidant enzymes in the kidneys, heart and brain of rats exposed to CCl4. When the extract of P. ostreatus was used to treat rats with CCl4-induced toxicity, it lowered the mean level of MDA, elevated the mean levels of GSH and of vitamins C and E and enhanced the mean activities of CAT, SOD, Gpx and GST so that the values of most of these parameters did not differ significantly from those of normal rats. Histopathological studies confirmed the toxic effects of CCl4 on other organs such as kidneys, heart and brain and also tissue protective effect of the extract of P. ostreatus. These results suggest that an extract of P. ostreatus is able to alleviate the oxidative damage caused by CCl4 in the kidneys, heart and brain of Wistar rats.  相似文献   
213.
Oral cancer is one of the most common cancers in the world. Drugs can modulate the expression of drug metabolizing enzymes and are useful in chemoprevention as well as therapy in cancer. 4-Nitroquinoline 1-oxide (4-NQO) is used to induce oral cancer in the present study. In the present investigation, the effect of green tea polyphenols (GTP) on the activities of cytochrome b5, cytochrome P450, cytochrome b5 reductase (cyt b5 R), cytochrome P450 reductase (cyt P450 R), arryl hydrocarbon hydroxylase (AHH), DT-diaphorase (DTD)(Phase I enzymes) and glutathione-S-transferase (GST) and UDP-glucuronyl transferase (UDP-GT) (Phase II enzymes) were assessed in tongue and oral cavity. In induced rats, there was a decrease in the activity of Phase II enzymes and an increase in the activity of Phase I enzymes. On supplementation of GTP by both simultaneous and post treatment mode (200mg/kg) there was a significant increase in the activity of GST and UDP-GT and a significant decrease in the activity of Phase I enzymes. There was a significant decline in the number of tumors, tumor volume and oral squamous cell carcinoma in both simultaneous and post GTP treated animals relative to 4-NQO induced animals; on comparing simultaneous and post GTP treated animals the number of tumors, tumor volume and oral squamous cell carcinoma was significantly reduced in post treated animals. Thus inhibition of Phase I enzymes could be attributed to the protective efficacy of GTP which deactivates carcinogen and GTP induced the expression of Phase II enzymes that detoxifies the 4-NQO. It can be proposed that GTP plays role as a detoxifying agent by which its modulating role prevented/inhibited the formation of tumor.  相似文献   
214.
Chitin is a natural biopolymer have been used for several biomedical applications due to its biodegradability and biocompatibility. By using the calcium solvent system, chitin regenerated hydrogel (RG) was prepared by using -chitin. And also, the swelling hydrogel (SG) was prepared by using β-chitin with water. Then, both RG and SG were mixed with gelatin and N-acetyl-d-(+)-glucosamine (GlcNAc) at 120 °C for 2 h. The chitin/gelatin membranes with GlcNAc were also prepared by using RG and SG with GlcNAc. The prepared chitin/gelatin membranes with or without GlcNAc were characterized by mechanical, swelling, enzymatic degradation, thermal and growth of NIH/3T3 fibroblast cell studies. The stress and elongation of chitin/gelatin membrane with GlcNAc prepared from RG was showed higher than the chitin/gelatin membranes without GlcNAc. But, the chitin/gelatin membranes prepared from SG with GlcNAc was showed higher stress and elongation than the chitin/gelatin membranes without GlcNAc. It is due to the crosslinking effect of GlcNAc. The chitin/gelatin membranes prepared from SG showed higher swelling than the chitin/gelatin membranes prepared from RG. In contrast, the chitin/gelatin membranes prepared from RG showed higher degradation than the chitin/gelatin membranes prepared from SG. And also, these chitin/gelatin membranes are showing good growth of NIH/3T3 fibroblast cell. So these novel chitin/gelatin membranes are useful for tissue engineering applications.  相似文献   
215.
The filarial parasite Setaria digitata is unique in having two ubiquinones, Q(6) and Q(8), in the adult stage, in place of one, namely Q(10), in the host. However, the microfilariae (mf) as well as the electron transfer complexes from adult mitochondria have been recently shown to contain only Q(6). The second ubiquinone Q(8) is present only in the adult and absent in the mf. Though both Q(6) and Q(8) are present in the adult stage in the ratio 65:35, there is an enrichment of Q(8) in the excretory and secretory (ES) materials released into the incubation medium. The Q(6) level in the ES materials decreased further when the adult parasite was incubated in presence of diethylcarbamazine, a drug which inhibits the release of mf, indicating that the Q(6) detected in ES may be of mf origin. The preferential release of Q(8) into the external medium and its presence in the adult stage without any apparent role in the electron transport process strongly indicate an antioxidant role for the molecule. The inhibitory effect of Q(8) on lipid peroxidation and the presence of other components such as catalase and superoxide dismutase shown to be present in ES materials in earlier studies help the filarial parasite survive for longer periods by overcoming the oxidative reactions of the host generated against it.  相似文献   
216.
In the present study we have elucidated the toxicity of a novel amyloid forming model peptide, Poly (leucine-glutamic acid). The toxicity of the fibrils prepared from this peptide was analyzed in peripheral blood lymphocytes (PBL). The MTT reduction assay revealed that the viability of PBL decreases significantly upon treatment with Poly(leucine-glutamic acid) (Poly [LE]). Enhanced DCFH-DA fluorescence in treated cells suggests that peptide toxicity is probably mediated by the formation of free radicals. In vivo and in vitro biochemical studies indicated that Poly [LE] inactivates the antioxidant system of cells. Perturbation of Poly [LE] in a membrane lipid environment was assessed by circular dichroism (CD) using phosphotidyl choline-cholesterol bilayers. The CD results revealed that LE enhances its beta sheet content in a bilayer environment. Sequestration of Poly [LE] in lipid rafts demonstrates that it has a binding cleft similar to Abeta in lymphocyte raft domains. Nuclear membrane binding studies showed that Poly [LE] binds to nuclear membranes and may cause genotoxicity.  相似文献   
217.
Ammonia is a neurotoxin that predominantly affects astrocytes. Disturbed mitochondrial function and oxidative stress, factors implicated in the induction of the mitochondrial permeability transition (MPT), appear to be involved in the mechanism of ammonia neurotoxicity. We have recently shown that ammonia induces the MPT in cultured astrocytes. To elucidate the mechanisms of the MPT, we examined the role of oxidative stress and glutamine, a byproduct of ammonia metabolism. The ammonia-induced MPT was blocked by antioxidants, suggesting a causal role of oxidative stress. Direct application of glutamine (4.5-7.0 mM) to cultured astrocytes increased free radical production and induced the MPT. Treatment of astrocytes with the mitochondrial glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine, completely blocked free radical formation and the MPT, suggesting that high ammonia concentrations in mitochondria resulting from glutamine hydrolysis may be responsible for the effects of glutamine. These studies suggest that oxidative stress and glutamine play major roles in the induction of the MPT associated with ammonia neurotoxicity.  相似文献   
218.
Combined Effects of Ammonia and Manganese on Astrocytes in Culture   总被引:3,自引:0,他引:3  
Ammonia has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and astrocytes appear to be the primary target of ammonia neurotoxicity. Recent work has shown that manganese also plays a role in the pathogenesis of HE and causes astrocyte morphologic and functional changes similar to ammonia. We therefore investigated whether a combination of these compounds could produce additive/synergistic effects. Cultured astrocytes treated with 5 mM ammonia (NH4Cl) along with 100 M manganese acetate (MnAc) for 3 h showed a 55–65% increase in free radical production over ammonia or manganese alone (P < 0.05). There was also a 50% decrease in the mitochondrial membrane potential ( m) at 24 h following treatment with NH4Cl (5 mM) plus MnAc (50 M) Pt< 0.05), as compared to ammonia or manganese alone. Astrocytes treated with ammonia or manganese alone for 24 h showed no cell death, as determined by LDH release and light microscopic examination. However, cultures treated with ammonia plus manganese showed 80–90 necrotic cell death as estimated by light microscopy and 59 cell death as determined by LDH release. LDH release by ammonia plus manganese was blocked by the antioxidant superoxide dismutase (25 units/ml) as well as by the nitric oxide synthase inhibitor N-nitro-L-argininemethyl ester (500 M). In conclusion, ammonia plus manganese exert additive/synergetic effects on the induction free radicals, mitochondrial inner membrane depolarization and cellular integrity, which may contribute to the tissue injury associated with chronic forms of HE.Special issue dedicated to Lawrence. F. Eng.  相似文献   
219.
Conformational analysis of peptide 1, H-Leu-Leu-Ile-Leu-OMe on complexing with macro cycle calix[8]arene has been carried out using (1)H-NMR and FTIR spectroscopic techniques. Stoichiometry of the complex formed in the 1:8 ratio was evidenced by a Job plot. NMR studies of the above peptide show a marked downfield shift and an increase in (3)J values for NH resonances on complexing with calix[8]arene. The characteristic NOE connectivity between N(i+1)H and C(ialpha)H confirm beta-sheet conformation in the complexed state. Both (1)H-NMR and FTIR results indicate that the alpha-amino group of Leu I is proximal to the macrocycle and is involved in hydrogen bond formation with phenolic hydrogen atom of the calix[8]arene. This suggests that calix[8]arene provides a suitable platform for peptide 1 to self-assemble in a parallel beta-sheet conformation. The nature of calix[8]arene interaction with peptide 1 has been studied using dynamic NMR studies, which concludes that a bifurcated hydrogen bonding interaction exists in the molecular interfaces of the assembly.  相似文献   
220.
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and astrocytes appear to be the principal target of ammonia toxicity. Glutamine, a byproduct of ammonia metabolism, has been implicated in some of the deleterious effects of ammonia on the CNS. We have recently shown that ammonia induces the mitochondrial permeability transition (MPT) in cultured astrocytes, but not in neurons. We therefore determined whether glutamine is also capable of inducing the MPT in cultured astrocytes. Astrocytes were treated with glutamine (4.5 mM) for various time periods and the MPT was assessed by changes in 2-deoxyglucose (2-DG) mitochondrial permeability, calcein fluorescence assay, and by changes in cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (deltapsi(m)) using the potentiometric dye, JC-1. Astrocytes treated with glutamine significantly increased 2-DG permeability (120%, P<0.01), decreased mitochondrial calcein fluorescence, and concomitantly dissipated the deltapsi(m). All of these effects were blocked by CsA. These data indicate that glutamine induces the MPT in cultured astrocytes. The induction of the MPT by glutamine in astrocytes, and the subsequent development of mitochondrial dysfunction, may partially explain the deleterious affects of glutamine on the CNS in the setting of hyperammonemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号