首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1225篇
  免费   88篇
  1313篇
  2023年   16篇
  2022年   29篇
  2021年   28篇
  2020年   26篇
  2019年   19篇
  2018年   37篇
  2017年   27篇
  2016年   34篇
  2015年   36篇
  2014年   59篇
  2013年   82篇
  2012年   108篇
  2011年   73篇
  2010年   41篇
  2009年   40篇
  2008年   38篇
  2007年   62篇
  2006年   38篇
  2005年   38篇
  2004年   45篇
  2003年   41篇
  2002年   53篇
  2001年   34篇
  2000年   38篇
  1999年   33篇
  1998年   4篇
  1997年   8篇
  1996年   10篇
  1995年   11篇
  1994年   9篇
  1993年   10篇
  1992年   22篇
  1991年   12篇
  1990年   17篇
  1989年   8篇
  1988年   17篇
  1987年   11篇
  1986年   9篇
  1985年   5篇
  1984年   8篇
  1983年   8篇
  1982年   13篇
  1981年   9篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1973年   4篇
  1969年   3篇
  1968年   3篇
  1967年   5篇
排序方式: 共有1313条查询结果,搜索用时 15 毫秒
21.
22.
23.
Phospholipid fatty acids (PLFAs) as biomarkers are well established in the literature. A general method based on least square approximation (LSA) was developed for the estimation of community structure from the PLFA signature of a mixed population where biomarker PLFA signatures of the component species were known. Fatty acid methyl ester (FAME) standards were used as species analogs and mixture of the standards as representative of the mixed population. The PLFA/FAME signatures were analyzed by gas chromatographic separation, followed by detection in flame ionization detector (GC-FID). The PLFAs in the signature were quantified as relative weight percent of the total PLFA. The PLFA signatures were analyzed by the models to predict community structure of the mixture. The LSA model results were compared with the existing "functional group" approach. Both successfully predicted community structure of mixed population containing completely unrelated species with uncommon PLFAs. For slightest intersection in PLFA signatures of component species, the LSA model produced better results. This was mainly due to inability of the "functional group" approach to distinguish the relative amounts of the common PLFA coming from more than one species. The performance of the LSA model was influenced by errors in the chromatographic analyses. Suppression (or enhancement) of a component's PLFA signature in chromatographic analysis of the mixture, led to underestimation (or overestimation) of the component's proportion in the mixture by the model. In mixtures of closely related species with common PLFAs, the errors in the common components were adjusted across the species by the model.  相似文献   
24.
Dey M  Li X  Kunz RC  Ragsdale SW 《Biochemistry》2010,49(51):10902-10911
Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in methanogenesis using coenzyme B (CoBSH) as the two-electron donor to reduce methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide, CoBS-SCoM. The active site of MCR contains an essential redox-active nickel tetrapyrrole cofactor, coenzyme F(430), which is active in the Ni(I) state (MCR(red1)). Several catalytic mechanisms have been proposed for methane synthesis that mainly differ in whether an organometallic methyl-Ni(III) or a methyl radical is the first catalytic intermediate. A mechanism was recently proposed in which methyl-Ni(III) undergoes homolysis to generate a methyl radical (Li, X., Telser, J., Kunz, R. C., Hoffman, B. M., Gerfen, G., and Ragsdale, S. W. (2010) Biochemistry 49, 6866-6876). Discrimination among these mechanisms requires identification of the proposed intermediates, none of which have been observed with native substrates. Apparently, intermediates form and decay too rapidly to accumulate to detectible amounts during the reaction between methyl-SCoM and CoBSH. Here, we describe the reaction of methyl-SCoM with a substrate analogue (CoB(6)SH) in which the seven-carbon heptanoyl moiety of CoBSH has been replaced with a hexanoyl group. When MCR(red1) is reacted with methyl-SCoM and CoB(6)SH, methanogenesis occurs 1000-fold more slowly than with CoBSH. By transient kinetic methods, we observe decay of the active Ni(I) state coupled to formation and subsequent decay of alkyl-Ni(III) and organic radical intermediates at catalytically competent rates. The kinetic data also revealed substrate-triggered conformational changes in active Ni(I)-MCR(red1). Electron paramagnetic resonance (EPR) studies coupled with isotope labeling experiments demonstrate that the radical intermediate is not tyrosine-based. These observations provide support for a mechanism for MCR that involves methyl-Ni(III) and an organic radical as catalytic intermediates. Thus, the present study provides important mechanistic insights into the mechanism of this key enzyme that is central to biological methane formation.  相似文献   
25.

Background

A live oral cholera vaccine VA 1.4 developed from a non-toxigenic Vibrio cholerae O1 El Tor strain using ctxB gene insertion was further developed into a clinical product following cGMP and was evaluated in a double-blind randomized placebo controlled parallel group two arm trial with allocation ratio of 1∶1 for safety and immunogenicity in men and women aged 18–60 years from Kolkata, India.

Method

A lyophilized dose of 1.9×109 CFU (n = 44) or a placebo (n = 43) reconstituted with a diluent was administered within 5 minutes of drinking 100 ml of a buffer solution made of sodium bicarbonate and ascorbic acid and a second dose on day 14.

Result

The vaccine did not elicit any diarrhea related adverse events. Other adverse events were rare, mild and similar in two groups. One subject in the vaccine group excreted the vaccine strain on the second day after first dose. The proportion of participants who seroconverted (i.e. had 4-folds or higher rise in reciprocal titre) in the vaccine group were 65.9% (95% CI: 50.1%–79.5%) at both 7 days (i.e. after 1st dose) and 21 days (i.e. after 2nd dose). None of the placebo recipients seroconverted. Anti-cholera toxin antibody was detected in very few recipients of the vaccine.

Conclusion

This study demonstrates that VA 1.4 at a single dose of 1.9×109 is safe and immunogenic in adults from a cholera endemic region. No additional benefit after two doses was seen.

Trial Registration

Clinical Trials Registry-India, National Institute of Medical Statistics (Indian Council of Medical Research) CTRI/2012/04/002582  相似文献   
26.
Cervical cancer is the second most common cause of cancer-related death among women worldwide, especially in developing countries. Oxidative stress has been associated with cervical cancer. Many studies demonstrated that the low level of antioxidants induces the production of free radicals that cause lipid peroxidation, DNA, and protein damage leading to mutations that favors malignant transformation. This is a case-control institutional study conducted to evaluate the level of oxidative stress in cervical cancer patients and the age-matched healthy controls. We measured level of TBARS expressed as MDA, activity of SOD and GSH level by the spectrophotometric method, and level of 8-OHdG was estimated using a competitive sandwich ELISA assay. Our results showed a significant increase in the level of lipid peroxidation in group IV when compared to the control, group II and group III (p < 0.001). The activity of SOD was also significantly higher in group IV when compared to the control group (p < 0.001), group II (p < 0.001), and group III (p < 0.001). The level of GSH was also significantly lower in group IV when compared to the control group (p < 0.01), group II (p < 0.01), and group III (p < 0.01). The level of 8-OHdG was significantly higher in group IV than in the other groups (p < 0.01). The results suggest that oxidative stress is involved in the pathogenesis of cervical cancer, which is demonstrated by an increased level of lipid peroxidation and higher levels of 8-OHdG and an altered antioxidant defense system.  相似文献   
27.
AimsWe sought to identify, purify and partially characterize a protein inhibitor of Na+/K+-ATPase in cytosol of pulmonary artery smooth muscle.Main methods(i) By spectrophotometric assay, we identified an inhibitor of Na+/K+-ATPase in cytosolic fraction of pulmonary artery smooth muscle; (ii) the inhibitor was purified by a combination of ammonium sulfate precipitation, diethylaminoethyl (DEAE) cellulose chromatography, hydroxyapatite chromatography and gel filtration chromatography; (iii) additionally, we have also purified Na+/K+-ATPase α2β1 and α1β1 isozymes for determining some characteristics of the inhibitor.Key findingsWe identified a novel endogenous protein inhibitor of Na+/K+-ATPase having an apparent mol mass of ~ 70 kDa in the cytosolic fraction of the smooth muscle. The IC50 value of the inhibitor towards the enzyme was determined to be in the nanomolar range. Important characteristics of the inhibitor are as follows: (i) it showed different affinities toward the α2β1 and α1β1 isozymes of the Na+/K+-ATPase; (ii) it interacted reversibly to the E1 site of the enzyme; (iii) the inhibitor blocked the phosphorylated intermediate formation; and (iv) it competitively inhibited the enzyme with respect to ATP. CD studies indicated that the inhibitor causes an alteration of the conformation of the enzyme. The inhibition study also suggested that the DHPC solubilized Na+/K+-ATPase exists as (αβ)2 diprotomer.SignificanceThe inhibitor binds to the Na+/K+-ATPase at a site different from the ouabain binding site. The novelty of the inhibitor is that it acts in an isoform specific manner on the enzyme, where α2 is more sensitive than α1.  相似文献   
28.
Two new aza analogues of the neuroprotective agent idebenone have been synthesized and characterized. Their antioxidant activity, and ability to augment ATP levels have been evaluated in several different cell lines having suboptimal mitochondrial function. Both compounds were found to be good ROS scavengers, and to protect the cells from oxidative stress induced by glutathione depletion. The compounds were more effective than idebenone in neurodegenerative disease cells. These novel pyrimidinol derivatives were also shown to augment ATP levels in coenzyme Q10-deficient human lymphocytes. The more lipophilic side chains attached to the pyrimidinol redox core in these compounds resulted in less inhibition of the electron transport chain and improved antioxidant activity.  相似文献   
29.
A total of ten rare indigenous rice landraces of West Bengal were screened for germination potential and seedling growth under varying concentrations of sodium chloride (NaCl) and polyethylene glycol (PEG) solutions as osmotic stress inducing agents. Among the studied rice landraces Kelas and Bhut Moori showed highest degree of tolerance to induced osmotic stresses. Proline content of the studied lines was also determined. Genetic relationship among the studied rice landraces was assessed with 22 previously reported osmotic stress tolerance linked Simple Sequence Repeat (SSR) markers. The identified allelic variants in form of amplified products size (molecular weight) for each SSR marker were documented to find out allele mining set for the linked markers of the studied genotypes in relation to osmotic stress tolerance. A Microsatellite Panel was constructed for the different allelic forms (size of amplified products) of each used marker. Among 22 SSR markers, ten showed unique alleles in form of single specific amplified product for the studied four genotypes which can be used for varietal identification. Genetic relationship among the studied rice lines was determined and a dendrogram was constructed to reveal their genetic inter-relationship. Polymorphism Information Content (PIC) for each used marker was also calculated for the studied rice lines.  相似文献   
30.
We investigated the mechanism by which TxA2 mimetic, U46619, activates proMMP-2 in bovine pulmonary artery smooth muscle cells. Our study showed that treatment of the cells with U46619 caused an increase in the expression and subsequently activation of proMMP-2 in the cells. Pretreatment with p38MAPK inhibitor, SB203580; and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by U46619. U46619 also induced increase in MT1-MMP expression, which was inhibited upon pretreatment with SB203580 and Bay11-7082. U46619 treatment to the cells stimulated p38MAPK activity as well as NF-κB activation by IκB-α phosphorylation, translocation of NF-κBp65 subunit from cytosol to nucleus and subsequently, by increasing its DNA-binding activity. Induction of NF-κB activation seems to be mediated through IKK, as transfection of cells with either IKKα or IKKβ siRNA prevented U46619-induced phosphorylation of IκB-α and NF-κBp65 DNA-binding activity. U46619 treatment to the cells also downregulated the TIMP-2 level. Pretreatment of the cells with SB203580 and Bay11-7082 did not show any discernible change in TIMP-2 level by U46619. Overall, U46619-induced activation of proMMP-2 is mediated via involvement of p38MAPK-NFκB-MT1MMP signaling pathway with concomitant downregulation of TIMP-2 expression in bovine pulmonary artery smooth muscle cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号